8 resultados para dangerous marine fish
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Among various groups of fishes, a shift in peak wavelength sensitivity has been correlated with changes in their photic environments. The genus Sebastes is a radiation of marine fish species that inhabit a wide range of depths from intertidal to over 600 m. We examined 32 species of Sebastes for evidence of adaptive amino acid substitution at the rhodopsin gene. Fourteen amino acid positions were variable among these species. Maximum likelihood analyses identify several of these to be targets of positive selection. None of these correspond to previously identified critical amino acid sites, yet they may in fact be functionally important. The occurrence of independent parallel changes at certain amino acid positions reinforces this idea. Reconstruction of habitat depths of ancestral nodes in the phylogeny suggests that shallow habitats have been colonized independently in different lineages. The evolution of rhodopsin appears to be associated with changes in depth, with accelerated evolution in lineages that have had large changes in depth.
Resumo:
Scuticociliatosis is an economically important, frequently fatal disease of marine fish in aquaculture, caused by histophagous ciliated protozoa in the subclass Scuticociliatida of the phylum Ciliophora. A rapidly lethal systemic scuticociliate infection is described that affected aquarium-captive zebra sharks (Stegostoma fasciatum), Port Jackson sharks (Heterodontus portusjacksoni), and a Japanese horn shark (Heterodontus japonicus). Animals died unexpectedly or after a brief period of lethargy or behavioral abnormality. Gross findings included necrohemorrhagic hepatitis and increased volumes of celomic fluid. Histologically, 1 or more of a triad of necrotizing hepatitis, necrotizing meningoencephalitis, and thrombosing branchitis were seen in all cases, with necrotizing vasculitis or intravascular fibrinocellular thrombi. Lesions contained variably abundant invading ciliated protozoa. Molecular identification by polymerase chain reaction from formalin-fixed tissues identified these as the scuticociliate Philasterides dicentrarchi (syn. Miamiensis avidus), a novel and potentially emergent pathogen in sharks.
Resumo:
Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion.
Resumo:
Endocrine disruption, in particular disruption by estrogen-active compounds, has been identified as an important ecotoxicological hazard in the aquatic environment. Research on the impact of endocrine disrupting compounds (EDCs) on wildlife has focused on disturbances of the reproductive system. However, there is increasing evidence that EDCs affect a variety of physiological systems other than the reproductive system. Here, we discuss if EDCs may be able to affect the immune system of fish, as this would have direct implications for individual fitness and population growth. Evidence suggesting an immunomodulatory role of estrogens in fish comes from the following findings: (a) estrogen receptors are expressed in piscine immune organs, (b) immune gene expression is modulated by estrogen exposure, and (c) pathogen susceptibility of fish increases under estrogen exposure.
Resumo:
Timing divergence events allow us to infer the conditions under which biodiversity has evolved and gain important insights into the mechanisms driving evolution. Cichlid fishes are a model system for studying speciation and adaptive radiation, yet, we have lacked reliable timescales for their evolution. Phylogenetic reconstructions are consistent with cichlid origins prior to Gondwanan landmass fragmentation 121-165 MYA, considerably earlier than the first known fossil cichlids (Eocene). We examined the timing of cichlid evolution using a relaxed molecular clock calibrated with geological estimates for the ages of 1) Gondwanan fragmentation and 2) cichlid fossils. Timescales of cichlid evolution derived from fossil-dated phylogenies of other bony fishes most closely matched those suggested by Gondwanan breakup calibrations, suggesting the Eocene origins and marine dispersal implied by the cichlid fossil record may be due to its incompleteness. Using Gondwanan calibrations, we found accumulation of genetic diversity within the radiating lineages of the African Lakes Malawi, Victoria and Barombi Mbo, and Palaeolake Makgadikgadi began around or after the time of lake basin formation. These calibrations also suggest Lake Tanganyika was colonized independently by the major radiating cichlid tribes that then began to accumulate genetic diversity thereafter. These results contrast with the widely accepted theory that diversification into major lineages took place within the Tanganyika basin. Together, this evidence suggests that ancient lake habitats have played a key role in generating and maintaining diversity within radiating lineages and also that lakes may have captured preexisting cichlid diversity from multiple sources from which adaptive radiations have evolved.
Resumo:
BDE-47 is one of the most widely found congeners of PBDEs in marine environments. The potential immunomodulatory effects of BDE-47 on fish complement system were studied using the marine medaka Oryzias melastigma as a model fish. Three-month-old O. melastigma were subjected to short-term (5 days) and long-term (21 days) exposure to two concentrations of BDE-47 (low dose at 290 +/- 172 ng/day; high dose at 580 +/- 344 ng/day) via dietary uptake of BDE-47 encapsulated in Artemia nauplii. Body burdens of BDE-47 and other metabolic products were analyzed in the exposed and control fish. Only a small amount of debrominated product, BDE-28, was detected, while other metabolic products were all under detection limit. Transcriptional expression of six major complement system genes involved in complement activation: C1r/s (classical pathway), MBL-2 (lectin pathway), CFP (alternative pathway), F2 (coagulation pathway), C3 (the central component of complement system), and C9 (cell lysis) were quantified in the liver of marine medaka. Endogenous expression of all six complement system genes was found to be higher in males than in females (p < 0.05). Upon dietary exposure of marine medaka to BDE-47, expression of all six complement genes were downregulated in males at day 5 (or longer), whereas in females, MBl-2, CFP, and F2 mRNAs expression were upregulated, but C3 and C9 remained stable with exposure time and dose. A significant negative relationship was found between BDE-47 body burden and mRNA expression of C1r/s, CFP, and C3 in male fish (r = -0.8576 to -0.9447). The above findings on changes in complement gene expression patterns indicate the complement system may be compromised in male O. melastigma upon dietary exposure to BDE-47. Distinct gender difference in expression of six major complement system genes was evident in marine medaka under resting condition and dietary BDE-47 challenge. The immunomodulatory effects of BDE-47 on transcriptional expression of these complement components in marine medaka were likely induced by the parent compound instead of biotransformed products. Our results clearly demonstrate that future direction for fish immunotoxicology and risk assessment of immunosuppressive chemicals must include parallel evaluation for both genders.
Resumo:
Marine genetic resources other than fish and mammals are of increasing commercial interest and importance in genetic engineering, but fail being properly addressed in the law of the sea and in international economic law. The paper analyses the implication of the United Nations Convention on the Law of the Sea, the Convention on Biodiversity, the WTO Agreement on Trade Related Aspects of Intellectual Property Rights and related instruments under the auspices of WIPO. The paper argues that the triangle of these agreements does not adequately address marine genetic resources in particular in the high seas. Neither concerns of protecting biodiversity nor of access and benefit sharing find appropriate answers commensurate to the commercial potential of marine genetic resources. The paper suggests developing an instrument inspired by, and comparable to, the mechanisms developed by the International Treaty on Plant Genetic Resources for Food and Agriculture. The instrument would grant facilitated access to marine genetic resources and offer a more detailed set of rules with respect to the sharing of benefits resulting from their use, thereby addressing the existing legal gaps in a comprehensive way.
Resumo:
This book is comprised of 9 chapters focusing on the diseases and disorders of cage cultured finfish. Topics discussed include an overview of cage culture and its importance in the 21st century, infectious diseases of coldwater fish in marine and brackish waters, infectious diseases of coldwater fish in fresh water, non-infectious disorders of coldwater fish, infectious diseases of warmwater fish in marine and brackish waters, infectious diseases of warmwater fish in fresh water, non-infectious disorders of warmwater fish, sporadic emerging diseases and disorders and transmission of infectious agents between wild and farmed fish