145 resultados para dairy-herds
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Several strategies are known for sanitizing dairy herd problems caused by Staphylococcus (S.) aureus. They mostly consist of general management measures but specific decision-making at an individual animal level has not been described. A sanitation program in the form of a process chart developed by the Bern Clinic for Ruminants was undertaken in 10 dairy herds with this problem. In an affected herd the cows were divided into 3 groups: healthy, suspect, infected. Three milk samples (MS), taken at two-week intervals were cultivated. The cows were grouped according to the culture results. To measure the success of the sanitation program, the key figures <
Resumo:
In June 2008 the compulsary nationwide vaccination against BTV-8 (Bluetongue virus serotype 8) was started. After a short time, several owners complained about undesirable effects of the vaccination on fertility and milk quality. Data from 47 dairy farms, regularly supervised by herd health practitioners, were analysed in order to clarify a possible connection between vaccination and fertility. Both vaccinations given each cow for basic immunization were evaluated according to their effects on conception rate and pregnancy. In model calculations the first vaccination had no significant effect on the first service conception rate (FCR), the all service conception rate (ACR) and on the abortion rate. The second vaccination led to a significantly reduced FCR when the cow was inseminated within 20 days of being vaccinated and to a significantly worse ACR when inseminated 10 days before or after vaccination. However, these individually established reductions of the insemination rate had only little influence on overall data.
Resumo:
Abstract Staphylococcus aureus is a major mastitis-causing pathogen. Various genotypes have been recently identified in Switzerland but Staph. aureus genotype B (GTB) was the only genotype associated with high within-herd prevalence. The risk of introducing this Staph. aureus genotype into a herd may be increased by frequent animal movements. This may also be the case when cows from different herds of origin are commingled and share their milking equipment for a limited period of time. The aim of the present study was to determine the prevalence of Staph. aureus GTB in seasonally communal dairy herds before and after a summer period when dairy farming is characterized by mixing cows from different herds of origin in 1 communal operation. In addition, the environment was investigated to identify potential Staph. aureus GTB reservoirs relevant for transmission of the disease. A total of 829 cows from 110 herds of origin in 9 communal operations were included in the study. Composite milk samples were collected from all cows during the first or second milking after arrival at the communal operation and again shortly before the end of the season. Swab samples from the environment, involved personnel, and herding dogs present were collected before the cows arrived. At the end of the season, sampling of personnel was repeated. All samples were analyzed for the presence of Staph. aureus GTB using an established quantitative PCR. At the beginning of the season, Staph. aureus GTB-positive cows were identified in 7 out of 9 communal operations and the within-communal operation prevalence ranged from 2.2 to 38.9%. At the second sampling, all communal operations were Staph. aureus GTB positive, showing within-communal operation prevalence from 1 to 72.1%. The between-herd of origin prevalence increased from 27.3 to 56.6% and the cow-level prevalence increased from 11.2% at the beginning of the season to 29.6% at the end of the season. On 3 different communal operations, Staph. aureus GTB-positive swabs from seasonally employed personnel were identified at the end of the season. The results indicate that Staph. aureus GTB can easily spread in communal operations when cows from different herds of origin are mixed during the summer season. Effective management measures need to be designed to prevent the spread of Staph. aureus GTB in seasonally communal herds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. KEYWORDS: Staphylococcus aureus; biosecurity; communal herd; epidemiology
Resumo:
Bovine mastitis is a frequent problem in Swiss dairy herds. One of the main pathogens causing significant economic loss is Staphylococcus aureus. Various Staph. aureus genotypes with different biological properties have been described. Genotype B (GTB) of Staph. aureus was identified as the most contagious and one of the most prevalent strains in Switzerland. The aim of this study was to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB in Swiss dairy herds with an elevated yield-corrected herd somatic cell count (YCHSCC). One hundred dairy herds with a mean YCHSCC between 200,000 and 300,000cells/mL in 2010 were recruited and each farm was visited once during milking. A standardized protocol investigating demography, mastitis management, cow husbandry, milking system, and milking routine was completed during the visit. A bulk tank milk (BTM) sample was analyzed by real-time PCR for the presence of Staph. aureus GTB to classify the herds into 2 groups: Staph. aureus GTB-positive and Staph. aureus GTB-negative. Moreover, quarter milk samples were aseptically collected for bacteriological culture from cows with a somatic cell count ≥150,000cells/mL on the last test-day before the visit. The culture results allowed us to allocate the Staph. aureus GTB-negative farms to Staph. aureus non-GTB and Staph. aureus-free groups. Multivariable multinomial logistic regression models were built to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB. The prevalence of Staph. aureus GTB herds was 16% (n=16), whereas that of Staph. aureus non-GTB herds was 38% (n=38). Herds that sent lactating cows to seasonal communal pastures had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 10.2, 95% CI: 1.9-56.6), compared with herds without communal pasturing. Herds that purchased heifers had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds without purchase of heifers. Furthermore, herds that did not use udder ointment as supportive therapy for acute mastitis had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 8.5, 95% CI: 1.6-58.4) or Staph. aureus non-GTB (odds ratio: 6.1, 95% CI: 1.3-27.8) than herds that used udder ointment occasionally or regularly. Herds in which the milker performed unrelated activities during milking had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds in which the milker did not perform unrelated activities at milking. Awareness of 4 potential risk factors identified in this study guides implementation of intervention strategies to improve udder health in both Staph. aureus GTB and Staph. aureus non-GTB herds.
Resumo:
The aims of this study were to quantify the effectiveness of specialist advice about udder health in Swiss dairy herds and to compare 3 different udder health improvement strategies against a negative control group. In 2010, 100 Swiss dairy herds with a high (between 200,000 and 300,000 cells/mL) yield-corrected bulk milk somatic cell count (YCBMSCC) were recruited for a 1-yr multiarm randomized field trial. The herds were visited between September and December 2011 to evaluate udder health-management practices and then randomly allocated into 1 of 4 study arms containing 25 herds each. The negative control study arm received neither recommendations for improving udder health nor any active support. The remaining 75 farmers received a herd-specific report with recommendations to improve udder health management. The positive control study arm received no further active support during 2012. The veterinarian study arm received additional support in the form of monthly visits by their herd veterinarian. Finally, the study group study arm received support in the form of bimonthly study group meetings where different topics concerning udder health were discussed. One year later, implementation of recommendations and changes in udder health were assessed. Of the recommendations given, 44.3% were completely implemented, 23.1% partially, and 32.6% were not implemented. No differences in implementation of recommendations were noted between the 3 study arms. At study enrollment, farmers were asked for the study arm of their preference but were subsequently randomly assigned to 1 of the 4 study arms. Farmers that were assigned to the study arm of their preference implemented more recommendations than farmers assigned to a study arm not of their preference. No decrease in the within-herd prevalence of cows that had a high (≥200,000 cells/mL) composite somatic cell count was observed in herds that had a YCBMSCC ≥200,000 cells/mL at the start of intervention. However, the 3 study arms with intervention (positive control, the veterinarian, and the study groups) prevented an increase in the within-herd prevalence of cows that had a high somatic cell count in herds with a low YCBMSCC at the start of the intervention compared with the negative control study arm. In the year after sending the report, herds assigned to the study group study arm had a reduced incidence rate of treated mastitis cases in comparison with the year before sending the report.
Resumo:
Schmallenberg virus (SBV) was first detected in Switzerland in July 2012 and many Swiss dairy farmers reported acute clinical signs in dairy cattle during the spread of the virus until December 2012. The objectives of the present study were to investigate the effects of an acute infection with SBV on milk yield, fertility and veterinary costs in dairy farms with clinical signs of SBV infection (case farms), and to compare those farms to a matched control group of dairy farms in which cattle did not show clinical signs of SBV infection. Herd size was significantly (p<0.001) larger in case farms (33 cows, n=77) than in control farms (25 cows, n=84). Within case herds, 14.8% (median) of the cows showed acute clinical signs. Managers from case farms indicated to have observed a higher abortion rate during the year with SBV (6.5%) than in the previous year (3.7%). Analysis of fertility parameters based on veterinary bills and data from the breeding associations showed no significant differences between case and control farms. The general veterinary costs per cow from July to December 2012 were significantly higher (p=0.02) in case (CHF 19.80; EUR 16.50) than in control farms (CHF 15.90; EUR 13.25). No differences in milk yield were found between groups, but there was a significant decrease in milk production in case farms in the second half year in 2012 compared to the same period in 2011 (p<0.001) and 2013 (p=0.009). The average daily milk yield per cow (both groups together) was +0.73kg higher (p=0.03) in the second half year 2011 and +0.52kg (p=0.12) in the second half year 2013 compared to the same half year 2012. Fifty-seven percent of the cows with acute clinical signs (n=461) were treated by a veterinarian. The average calculated loss after SBV infection for a standardized farm was CHF 1606 (EUR 1338), which can be considered as low at the national level, but the losses were subject to great fluctuations between farms, so that individual farms could have very high losses (>CHF 10,000, EUR 8333).
Resumo:
Switzerland had been affected by the bluetongue virus serotype 8 (BTV-8) epidemic in Europe in the years 2007 to 2009. After three years of mandatory vaccination and comprehensive surveillance, Switzerland showed to be free of BTV-8 in 2012. In the future Elisa testing of bulk-tank milk (BTM) samples as a very sensitive and cost-effective method should be used for the surveillance of all serotypes of BTV. To determine the prevalence of seropositive herds, BTM from 240 cattle herds was sampled in July 2012. The results showed an apparent seroprevalence of 98.7% in the investigated dairy herds. Most plausible, the high prevalence was caused by the vaccination campaigns rather than by infections with BTV-8. In the outbreak the cumulative number of BTV-8 cases in Switzerland had been 75.Thus it is very likely that the used inactivated vaccines induced long-term antibody titres. Due to the high seroprevalence, investigating for BT-antibodies cannot be used for early recognition of a new introduction of BTV at the moment. Nonetheless, testing of BTM samples is appropriate for an annual evaluation of the seroprevalence and especially as an instrument for early recognition for incursions as soon as the antibody prevalence declines.To determine this decline the BTM testing scheme should be conducted each year as described in this work.
Resumo:
Farm animals may serve as models for evaluating social networks in a controlled environment. We used an automated system to track, at fine temporal and spatial resolution (once per minute, +/- 50 cm) every individual in six herds of dairy cows (Bos taurus). We then analysed the data using social network analyses. Relationships were based on non-random attachment and avoidance relationships in respect to synchronous use and distances observed in three different functional areas (activity, feeding and lying). We found that neither synchrony nor distance between cows was strongly predictable among the three functional areas. The emerging social networks were tightly knit for attachment relationships and less dense for avoidance relationships. These networks loosened up from the feeding and lying area to the activity area, and were less dense for relationships based on synchronicity than on median distance with respect to node degree, relative size of the largest cluster, density and diameter of the network. In addition, synchronicity was higher in dyads of dairy cows that had grown up together and shared their last dry period. This last effect disappeared with increasing herd size. Dairy herds can be characterized by one strongly clustered network including most of the herd members with many non-random attachment and avoidance relationships. Closely synchronous dyads were composed of cows with more intense previous contact. The automatic tracking of a large number of individuals proved promising in acquiring the data necessary for tackling social network analyses.
Resumo:
A comprehensive genetic analysis of 60 Mycoplasma sp. bovine group 7 isolates from different geographic origins and epidemiological settings is presented. Twenty-four isolates were recovered from the joints of calves during sporadic episodes of polyarthritis in geographically distinct regions of Queensland and New South Wales, Australia, including two clones of the type strain PG5O. A further three Australian isolates were also recovered from the tympanic bulla, retropharyngeal lymph node and the lung and another three isolates had unconfirmed histories. Six isolates originated from Germany, Portugal, Nigeria, and France. Twenty-four epidemiologically related isolates of Mycoplasma sp. bovine group 7 were recovered from multiple tissue sites and body fluids of infected calves with polyarthritis, mastitic milk, and from the stomach contents, lung and liver from aborted foetuses in three large, centrally managed dairy herds in New South Wales, Australia. Restriction endonuclease analysis (REA) of genomic DNA differentiated 29 Cfol profiles among these 60 isolates and grouped all 24 epidemiologically related isolates in a defined pattern showing a clonal origin. Three isolates of this clonal cluster were recovered from mastitic milk and the synovial exudate of clinically-affected calves and appeared sporadically for periods up to 18 months after the initial outbreak of polyarthritis indicating a persistent, close association of the organism with cattle in these herds. The Cfol profile representative of the clonal cluster was distinguishable from profiles of isolates recovered from multiple, unrelated cases of polyarthritis in Queensland and New South Wales and from other countries. All 24 isolates from the clonal cluster possessed a plasmid (pBG7AU) with a molecular size of 1022 bp. DNA sequence analysis of pBG7AU identified two open reading frames sharing 81 and 99% DNA sequence similarity with hypothetical replication control proteins A and B respectively, previously described in plasmid pADB201 isolated from M. mycoides subspecies mycoides. Other isolates of bovine group 7, epidemiologically unrelated to the clonal cluster, including two clones of the type strain PG5O, possessed a similar-sized plasmid. These data confirm that Mycoplasma sp. bovine group 7 is capable of migrating to, and multiplying within, different tissue sites within a single animal and among different animals within a herd.
Resumo:
The objective of this study was to describe the udder health management in Swiss dairy herds with udder health problems. One hundred dairy herds with a yield-corrected somatic cell count of 200'000 to 300'000 cells/ml during 2010 were selected. Data concerning farm structure, housing system, milking technique, milking procedures, dry-cow and mastitis management were collected during farm visits between September and December 2011. In addition, quarter milk samples were collected for bacteriological culturing from cows with a composite somatic cell count ≥ 150'000 cells/ml. The highest quarter level prevalence was 12.3 % for C. bovis. Eighty-two percent of the pipeline milking machines in tie-stalls and 88 % of the milking parlours fulfilled the criteria for the vacuum drop, and only 74 % of the pipeline milking machines met the criteria of the 10-l-water test. Eighty-five percent of the farms changed their milk liners too late. The correct order of teat preparation before cluster attachment was carried out by 37 % of the farmers only. With these results, Swiss dairy farmers and herd health veterinarians can be directed to common mistakes in mastitis management. The data will be used for future information campaigns to improve udder health in Swiss dairy farms.
Resumo:
Campylobacter jejuni is the most common food-borne zoonotic pathogen causing human gastroenteritis worldwide and has assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to get an overview of genotypes and antibiotic resistances in C. jejuni isolated from milk, cattle feces, and pigeons in dairy herds of Northern Italy. flaB-typing was applied to 78 C. jejuni isolates, previously characterized by Multi-Locus Sequence Typing, and genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. flaB-typing revealed 22 different types with one of them being novel and was useful to further differentiate strains with an identical Sequence Type (ST) and to identify a pigeon-specific clone. Macrolide resistance was not found, while quinolone resistance was detected in 23.3% of isolates. A relationship between specific genotypes and antibiotic resistance was observed, but was only significant for the Clonal Complex 206. Our data confirm that pigeons do not play a role in the spread of C. jejuni among cattle and they are not responsible for milk contamination. A relevant number of bulk milk samples were contaminated by C. jejuni resistant to quinolones, representing a possible source of human resistant strains.
Resumo:
BACKGROUND: Bovine paratuberculosis is an incurable chronic granulomatous enteritis caused by Mycobacterium avium subspecies paratuberculosis (MAP). The prevalence of MAP in the Swiss cattle population is hard to estimate, since only a few cases of clinical paratuberculosis are reported to the Swiss Federal Food Safety and Veterinary Office each year.Fecal samples from 1,339 cattle (855 animals from 12 dairy herds, 484 animals from 11 suckling cow herds, all herds with a history of sporadic paratuberculosis) were investigated by culture and real-time polymerase chain reaction (PCR) for shedding of MAP. RESULTS: By culture, MAP was detected in 62 of 445 fecal pools (13.9%), whereas PCR detected MAP in 9 of 445 pools (2.0%). All 186 samples of the 62 culture-positive pools were reanalyzed individually. By culture, MAP was grown from 59 individual samples (31.7%), whereas PCR detected MAP in 12 individual samples (6.5%), all of which came from animals showing symptoms of paratuberculosis during the study. Overall, MAP was detected in 10 out of 12 dairy herds (83.3%) and in 8 out of 11 suckling cow herds (72.7%). CONCLUSIONS: There is a serious clinically inapparent MAP reservoir in the Swiss cattle population. PCR cannot replace culture to identify individual MAP shedders but is suitable to identify MAP-infected herds, given that the amount of MAP shed in feces is increasing in diseased animals or in animals in the phase of transition to clinical disease
Resumo:
A novel real-time quantitative PCR assay for detecting the pathogenic and contagious Staphylococcus aureus genotype B (GTB) in bulk tank milk was developed and evaluated. The detection of this pathogen in bulk tank milk would greatly facilitate its control, as it is responsible for great economic loss in Swiss dairy herds. The assay is based on the simultaneous detection of 3 GTB-typical target sequences, including 2 enterotoxin genes and a polymorphism within the leucotoxin E gene. A variety of mastitis-associated bacteria was used to validate the assays, resulting in an analytical specificity of 100% and high repeatability. The analytical sensitivity in milk was 40 cfu/mL. An exponential association between simulated cow prevalence and quantitative PCR result was observed. An initial field study revealed 1 GTB-positive herd among the 33 studied herds. This novel assay for bulk tank milk analysis is suitable for routine purposes and is expected to be an effective tool for minimizing Staph. aureus GTB in Swiss dairy herds.
Resumo:
Mastitis is the most prevalent infectious disease in dairy herds. Breeding programs considering mastitis susceptibility were adopted as approaches to improve udder health status. In recent decades, conventional selection criteria based on phenotypic characteristics such as somatic cell score in milk have been widely used to select animals. Recently, approaches to incorporate molecular information have become feasible because of the detection of quantitative trait loci (QTL) affecting mastitis resistance. The aims of the study were to explore molecular mechanisms underlying mastitis resistance and the genetic mechanisms underlying a QTL on Bos taurus chromosome 18 found to influence udder health. Primary cell cultures of mammary epithelial cells from heifers that were selected for high or low susceptibility to mastitis were established. Selection based on estimated pedigree breeding value or on the basis of marker-assisted selection using QTL information was implemented. The mRNA expression of 10 key molecules of the innate immune system was measured using quantitative real-time PCR after 1, 6, and 24 h of challenge with heat-inactivated mastitis pathogens (Escherichia coli and Staphylococcus aureus) and expression levels in the high and low susceptibility groups were compared according to selection criteria. In the marker-assisted selection groups, mRNA expression in cells isolated from less-susceptible animals was significantly elevated for toll-like receptor 2, tumor necrosis factor-alpha, IL-1beta, IL-6, IL-8, RANTES (regulated upon activation, normal t-cell expressed and secreted), complement factor C3, and lactoferrin. In the estimated pedigree breeding value groups, mRNA expression was significantly elevated only for V-rel reticuloendotheliosis viral oncogene homolog A, IL-1 beta, and RANTES. These observations provide first insights into genetically determined divergent reactions to pathogens in the bovine mammary gland and indicate that the application of QTL information could be a successful tool for the selection of animals resistant to mastitis.
Resumo:
Based on a former study from our group, one subtype of Staphylococcus aureus was associated with high within-herd prevalence of mastitis, whereas the other subtypes were associated with a low prevalence (sporadic intramammary infection). To confirm this hypothesis, a prospective study was done in 29 Swiss dairy herds. In particular, milk samples were collected from 10 herds with Staph. aureus herd problems (cases) and compared with samples from 19 herds with only sporadic cases of with Staph. aureus intramammary infection (controls). The isolates were tested for their virulence gene pattern and genotyped by PCR amplification of the 16S-23S rRNA intergenic spacer. The patterns and genotypes were then associated and compared with epidemiological and clinical data. Confirming the hypothesis, one particular subtype (genotype B) was associated with high within-herd and within-cow prevalence of intramammary infection, whereas the other subtypes were associated with low within-herd prevalence and infected single quarters. The gene patterns and genotypes were highly related, demonstrating the genetic diversity of the genotypes. The somatic cell counts were clearly increased in herds with a genotype B problem compared with herds with infections of other genotypes. Based on the different clinical properties and treatment consequences associated with these different genotypes found in Switzerland, we recommend subtyping Staph. aureus in other countries to determine if this finding is universally applicable.