28 resultados para culture media
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.
Resumo:
Airway epithelial cells were shown to drive the differentiation of monocytes into dendritic cells (DCs) with a suppressive phenotype. In this study, we investigated the impact of virus-induced inflammatory mediator production on the development of DCs. Monocyte differentiation into functional DCs, as reflected by the expression of CD11c, CD123, BDCA-4, and DC-SIGN and the capacity to activate T cells, was similar for respiratory syncytial virus (RSV)-infected and mock-infected BEAS-2B and A549 cells. RSV-conditioned culture media resulted in a partially mature DC phenotype, but failed to up-regulate CD80, CD83, CD86, and CCR7, and failed to release proinflammatory mediators upon Toll-like receptor (TLR) triggering. Nevertheless, these DCs were able to maintain an antiviral response by the release of Type I IFN. Collectively, these data indicate that the airway epithelium maintains an important suppressive DC phenotype under the inflammatory conditions induced by infection with RSV.
Resumo:
The diagnostic yield of prosthetic joint-associated infection is hampered by the phenotypic change of bacteria into a sessile and resistant form, also called biofilm. With sonication, adherent bacteria can be dislodged from the prosthesis. Species identification may be difficult because of their variations in phenotypic appearance and biochemical reaction. We have studied the phenotypic, genotypic, and biochemical properties of Escherichia coli variants isolated from a periprosthetic joint infection. The strains were collected from synovial fluid, periprosthetic tissue, and fluid from the explanted and sonicated prosthesis. Isolates from synovial fluid revealed a normal phenotype, whereas a few variants from periprosthetic tissue and all isolates from sonication fluid showed different morphological features (including small-colony variants). All isolates from sonication fluid were beta-galactosidase negative and nonmotile; most were indole negative. Because of further variations in biochemical properties, species identification was false or not possible in 50% of the isolates included in this study. In contrast to normal phenotypes, variants were resistant to aminoglycosides. Typing of the isolates using pulsed-field gel electrophoresis yielded nonidentical banding patterns, but all strains were assigned to the same clonal origin when compared with 207 unrelated E. coli isolates. The bacteria were repeatedly passaged on culture media and reanalyzed. Thereafter, most variants reverted to normal phenotype and regained their motility and certain biochemical properties. In addition, some variants displayed aminoglycoside susceptibility after reversion. Sonication of an explanted prosthesis allows insight into the lifestyle of bacteria in biofilms. Since sonication fluid also reveals dislodged sessile forms, species identification of such variants may be misleading.
Resumo:
The major endocannabinoids (ECs) arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) and related N-ethanolamines act as full and partial agonists at CB(1), CB(2), GPR55, PPAR and TRPV1 receptors to various degrees. These receptors are also expressed in immune cells like monocytes/macrophages where they regulate different cellular processes. In this study, potentially bioactive lipids in fetal bovine sera (FBS) were quantified by GC/MS. We found that several commercial FBS contain ECs and bioactive amounts of 2-AG (250-700 nM). We show that residual 2-AG from FBS can activate primary macrophages and increase migration and RANKL-stimulated osteoclastogenesis. Furthermore, 2-AG high-content sera specifically upregulated LPS-stimulated IL-6 expression in U937 cells. Polymyxin B beads may be used to selectively and efficiently remove 2-AG from sera, but not arachidonic acid and N-ethanolamines. In conclusion, 2-AG in cell culture media may significantly influence cellular experiments. CD14+ mononuclear cells which strongly express surface CB receptors may be particularly sensitive towards residual 2-AG from FBS. Therefore, the EC content in culture media should be controlled in biological experiments involving monocytes/macrophages.
Resumo:
Studies using cultured cells allow one to dissect complex cellular mechanisms in greater detail than when studying living organisms alone. However, before cultured cells can deliver meaningful results they must accurately represent the in vivo situation. Over the last three to four decades considerable effort has been devoted to the development of culture media which improve in vitro growth and modeling accuracy. In contrast to earlier large-scale, non-specific screening of factors, in recent years the development of such media has relied increasingly on a deeper understanding of the cell's biology and the selection of growth factors to specifically activate known biological processes. These new media now enable equal or better cell isolation and growth, using significantly simpler and less labor-intensive methodologies. Here we describe a simple method to isolate and cultivate epidermal keratinocytes from embryonic or neonatal skin on uncoated plastic using a medium specifically designed to retain epidermal keratinocyte progenitors in an undifferentiated state for improved isolation and proliferation and an alternative medium to support terminal differentiation.
Resumo:
OBJECTIVE: To explore the role of pro-apoptotic signals following tissue injury and how these may promote a progression of further cell death. METHODS: Laser treated porcine articular cartilage disks were maintained in culture media. The collected media at various time periods (3, 6, 9, 12, 24 and 48 h), was called treated conditioned media (TCM). Non-laser treated cartilage disks were used to create control conditioned media (CCM). Each disk was subsequently maintained for 28 days and used in confocal microscopic assessment to document the progression of the damaged area. Isolated porcine chondrocytes were cultured in monolayer, and were exposed to TCM, CCM or normal culture medium (NM). As a positive inducer of apoptosis, the monolayer cells were exposed to UV radiation for 10 min and cultured in NM. Following 24 h exposure, the cells were harvested and stained with the appropriate combination of fluorescent dyes and processed via flow cytometry. RESULTS: All cultured cells exposed to TCM displayed a caspase-3 positive subpopulation, a loss of CMXRos, and with a reduced or lost NO signal. CCM exposure signals were comparable to the NM treatments with all having retained CMXRos, NO and without evidence of caspase-3 activity. UV treatment also induced a reduction in NO, but both CMXRos and caspase-3 positive, representing an earlier stage of apoptosis and suggesting that the mode of cell death via UV and TCM exposure are via different processes. The investigation of a dose (100%, 50%, 25% and 12.5%) and time (0.5, 1, 3, 9, 12 h) response to TCM exhibited that all treatments observed an increase in caspase-3 positive cells and a reduction in NO and CMXRos. CONCLUSION: The usefulness of FCM can be used in the study of cell viability and apoptosis. Such a system may be useful in the study of mechanisms of disease such as osteoarthritis, thus may be of practical use for the pharmaceutical industry for screening associated drugs.
Resumo:
Lymphocyte stimulation tests (LST) were performed in five dogs sensitised with ovalbumin (OVA) and seven healthy dogs. In addition, all five OVA-sensitised and two control dogs were tested after two in vivo provocations with OVA-containing eye drops. The isolated cells were suspended in culture media containing OVA and were cultured for up to 12 days. Proliferation was measured as reduction in 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) intensity by flow cytometry on days 0, 3, 6, 9 and 12. A cell proliferation index (CPI) for each day and the area under the curve (AUC) of the CPI was calculated for each dog. All OVA-sensitised dogs demonstrated increased erythema after conjunctival OVA application. The presence of OVA-specific lymphocytes was demonstrated in 2/5 OVA-sensitised dogs before and 4/5 after in vivo provocation. Using the AUC, the difference between OVA-sensitised and control dogs was significant in all three LST before in vivo provocation (P<0.05) and borderline significant (P=0.053) in 2/3 LST after provocation. The most significant difference in CPI was observed after 9 days of culture (P=0.001). This pilot study indicates that the LST allows detection of rare antigen specific memory T-cells in dogs previously sensitised to, but not concurrently undergoing challenge by a specific antigen.
Resumo:
BACKGROUND: Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS: A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS: We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION: In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.
Resumo:
Paraneoplastic pemphigus (PNP) shows autoantibodies mainly to plakin and desmosomal cadherin family proteins. We have recently identified alpha-2-macroglobulin-like-1 (A2ML1), a broad range protease inhibitor, as a unique PNP antigen. In this study, we tested a large number of PNP sera by various methods. Forty (69.0%) of 58 PNP sera recognized A2ML1 recombinant protein expressed in COS7 cells by immunofluorescence (IF) and/or immunoprecipitation (IP)/immunoblotting (IB). IP/IB showed higher sensitivity than IF. In addition, 22 (37.9%) PNP sera reacted with A2ML1 by IB of cultured normal human keratinocytes (NHKs) under non-reducing conditions. Statistical analyses using various clinical and immunological data showed that the presence of anti-A2ML1 autoantibodies was associated with early disease onset and absence of ocular lesions. Next, to investigate the pathogenic role of anti-A2ML1 antibody, we performed additional functional studies. Addition of anti-A2ML1 polyclonal antibody to culture media decreased NHK cell adhesion examined by dissociation assay, and increased plasmin activity detected by casein zymography, suggesting that anti-A2ML1 antibody may decrease NHK cell adhesion through plasmin activation by inhibition of A2ML1. This study demonstrates that autoantibodies to A2ML1 are frequently and specifically detected and may have a pathogenic role in PNP.
Resumo:
The aim of this study was to describe long-term follow-up and difference in immune reactions in the tear film following penetrating keratoplasty (PK) in horses when differently preserved corneas were utilised. This report describes for the first time the use of corneal grafts preserved in tissue culture media in equine PK. Eight experimental horses with normal eyes were included and freshly harvested, frozen or preserved corneal grafts were used for the PK. The graft-taking technique and storage, PK surgery, postoperative treatments and complications are described. The mean postoperative follow-up time was 286 days. Tear film samples taken before and periodically after surgery were measured for IgM, IgG and IgA contents by direct ELISA. All grafts were incorporated into the donor horse but were rejected to some degree. The differently harvested corneal grafts healed in the same manner and looked similar. Preoperatively, the clear corneas meant low risk for graft failure, and the fresh or stored tissues provided intact endothelium, although there were no clear graft sites postoperatively. The presence of IgA, IgG and IgM was demonstrated in the tear film from the early postoperative period. IgG levels were lower than IgA or IgM and had a constant baseline in every case, as IgA and IgM had great variability with time and an individual pattern in each eye.
Resumo:
It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle-protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and how this significantly influences the subsequent nanoparticle-cell interaction in vitro. Therefore, different surface charged superparamagnetic iron oxide nanoparticles were synthesized and characterized. Similar adsorbed protein profiles were identified following incubation in supplemented cell culture media, although cellular uptake varied significantly between the different particles. However, positively charged nanoparticles displayed a significantly lower colloidal stability than neutral and negatively charged particles while showing higher non-sedimentation driven cell-internalization in vitro without any significant cytotoxic effects. The results of this study strongly indicate therefore that an understanding of the aggregation state of NPs in biological fluids is crucial in regards to their biological interaction(s).
Resumo:
Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air–liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that – at least RME – can be considered a valuable alternative to pure fossil diesel.
Resumo:
Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.