3 resultados para cosmic microwave background
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Observable quantities in cosmology are dimensionless, and therefore independent of the units in which they are measured. This is true of all physical quantities associated with the primordial perturbations that source cosmic microwave background anisotropies such as their amplitude and spectral properties. However, if one were to try and infer an absolute energy scale for inflation—a priori, one of the more immediate corollaries of detecting primordial tensor modes—one necessarily makes reference to a particular choice of units, the natural choice for which is Planck units. In this note, we discuss various aspects of how inferring the energy scale of inflation is complicated by the fact that the effective strength of gravity as seen by inflationary quanta necessarily differs from that seen by gravitational experiments at presently accessible scales. The uncertainty in the former relative to the latter has to do with the unknown spectrum of universally coupled particles between laboratory scales and the putative scale of inflation. These intermediate particles could be in hidden as well as visible sectors or could also be associated with Kaluza–Klein resonances associated with a compactification scale below the scale of inflation. We discuss various implications for cosmological observables.
Resumo:
BACKGROUND Exposure to medium or high doses of ionizing radiation is a known risk factor for cancer in children. The extent to which low dose radiation from natural sources contributes to the risk of childhood cancer remains unclear. OBJECTIVES In a nationwide census-based cohort study, we investigated whether the incidence of childhood cancer was associated with background radiation from terrestrial gamma and cosmic rays. METHODS Children aged <16 years in the Swiss National Censuses in 1990 and 2000 were included. The follow-up period lasted until 2008 and incident cancer cases were identified from the Swiss Childhood Cancer Registry. A radiation model was used to predict dose rates from terrestrial and cosmic radiation at locations of residence. Cox regression models were used to assess associations between cancer risk and dose rates and cumulative dose since birth. RESULTS Among 2,093,660 children included at census, 1,782 incident cases of cancer were identified including 530 with leukemia, 328 with lymphoma, and 423 with a tumor of the central nervous system (CNS). Hazard ratios for each mSv increase in cumulative dose of external radiation were 1.03 (95% CI: 1.01, 1.05) for any cancer, 1.04 (1.00, 1.08) for leukemia, 1.01 (0.96, 1.05) for lymphoma, and 1.04 (1.00, 1.08) for CNS tumors. Adjustment for a range of potential confounders had little effect on the results. CONCLUSIONS Our study suggests that background radiation may contribute to the risk of cancer in children including leukemia and CNS tumors.