6 resultados para copper soil contamination

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homeopathic preparations are used in homeopathy and anthroposophic medicine. Although there is evidence of effectiveness in several clinical studies, including double-blinded randomized controlled trials, their nature and mode of action could not be explained with current scientific approaches yet. Several physical methods have already been applied to investigate homeopathic preparations but it is yet unclear which methods are best suited to identify characteristic physicochemical properties of homeopathic preparations. The aim of this study was to investigate homeopathic preparations with UV-spectroscopy. In a blinded, randomized, controlled experiment homeopathic preparations of copper sulfate (CuSO(4); 11c-30c), quartz (SiO(2); 10c-30c, i.e., centesimal dilution steps) and sulfur (S; 11×-30×, i.e., decimal dilution steps) and controls (one-time succussed diluent) were investigated using UV-spectroscopy and tested for contamination by inductively coupled plasma mass spectrometry (ICP-MS). The UV transmission for homeopathic preparations of CuSO(4) preparations was significantly lower than in controls. The transmission seemed to be also lower for both SiO(2) and S, but not significant. The mean effect size (95% confidence interval) was similar for the homeopathic preparations: CuSO(4) (pooled data) 0.0544% (0.0260-0.0827%), SiO(2) 0.0323% (-0.0064% to 0.0710%) and S 0.0281% (-0.0520% to 0.1082%). UV transmission values of homeopathic preparations had a significantly higher variability compared to controls. In none of the samples the concentration of any element analyzed by ICP-MS exceeded 100 ppb. Lower transmission of UV light may indicate that homeopathic preparations are less structured or more dynamic than their succussed pure solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42−, HCO3−, Na+, and Cl−, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl− (from soil), SO42− (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl−. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g−1 (median 2500 μg g−1) as compared to 187–14140 μg g−1 in soils (median 1148 μg g−1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Listeria (L.) monocytogenes causes orally acquired infections and is of major importance in ruminants. Little is known about L. monocytogenes transmission between farm environment and ruminants. In order to determine potential sources of infection, we investigated the distribution of L. monocytogenes genetic subtypes in a sheep farm during a listeriosis outbreak by applying four subtyping methods (MALDI-TOF-MS, MLST, MLVA and PFGE). L. monocytogenes was isolated from a lamb with septicemia and from the brainstem of three sheep with encephalitis. Samples from the farm environment were screened for the presence of L. monocytogenes during the listeriosis outbreak, four weeks and eight months after. L. monocytogenes was found only in soil and water tank swabs during the outbreak. Four weeks later, following thorough cleaning of the barn, as well as eight months later, L. monocytogenes was absent in environmental samples. All environmental and clinical L. monocytogenes isolates were found to be the same strain. Our results show that the outbreak involving two different clinical syndromes was caused by a single L. monocytogenes strain and that soil and water tanks were potential infection sources during this outbreak. However, silage cannot be completely ruled out as the bales fed prior to the outbreak were not available for analysis. Faeces samples were negative, suggesting that sheep did not act as amplification hosts contributing to environmental contamination. In conclusion, farm management appears to be a crucial factor for the limitation of a listeriosis outbreak.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigating preferential flow, including macropore flow, is crucial to predicting and preventing point sources of contamination in soil, for example in the vicinity of pumping wells. With a view to advancing groundwater protection, this study aimed (i) to quantify the strength of macropore flow in four representative natural grassland soils on the Swiss plateau, and (ii) to define the parameters that significantly control macropore flow in grassland soil. For each soil type we selected three measurement points on which three successive irrigation experiments were carried out, resulting in a total of 36 irrigations. The strength of macropore flow, parameterized as the cumulated water volume flowing from macropores at a depth of 1 m in response to an irrigation of 60 mm h−1 intensity and 1 h duration, was simulated using the dual-permeability MACRO model. The model calibration was based on the key soil parameters and fine measurements of water content at different depths. Modelling results indicate high performance of macropore flow in all investigated soil types except in gleysols. The volume of water that flowed from macropores and was hence expected to reach groundwater varied between 81% and 94% in brown soils, 59% and 67% in para-brown soils, 43% and 56% in acid brown soils, and 22% and 35% in gleysols. These results show that spreading pesticides and herbicides in pumping well protection zones poses a high risk of contamination and must be strictly prohibited. We also found that organic carbon content was not correlated with the strength of macropore flow, probably due to its very weak variation in our study, while saturated water content showed a negative correlation with macropore flow. The correlation between saturated hydraulic conductivity (Ks) and macropore flow was negative as well, but weak. Macropore flow appears to be controlled by the interaction between the bulk density of the uppermost topsoil layer (0–0.10 m) and the macroporosity of the soil below. This interaction also affects the variations in Ks and saturated water content. Further investigations are needed to better understand the combined effect of all these processes including the exchange between micropore and macropore domains.