50 resultados para control measures of arthropod-borne diseases
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Due to climate changes during the last decades, ticks have progressively spread into higher latitudes in northern Europe. Although some tick borne diseases are known to be endemic in Finland, to date there is limited information with regard to the prevalence of these infections in companion animals. We determined the antibody and DNA prevalence of the following organisms in randomly selected client-owned and clinically healthy hunting dogs living in Finland: Ehrlichia canis (Ec), Anaplasma phagocytophilum (Ap), Borrelia burgdorferi (Bb) and Bartonella. METHODS: Anti-Ap, -Bb and -Ec antibodies were determined in 340 Finnish pet dogs and 50 healthy hunting dogs using the 4DX Snap(R)Test (IDEXX Laboratories). In addition, PCRs for the detection of Ap and Bartonella DNA were performed. Univariate and multivariate logistic regression analyses were used to identify risk factors associated with seropositivity to a vector borne agent. RESULTS: The overall seroprevalence was highest for Ap (5.3%), followed by Bb (2.9%), and Ec (0.3%). Seropositivities to Ap and Bb were significantly higher in the Aland Islands (p <0.001), with prevalence of Ap and Bb antibodies of 45 and 20%, respectively. In healthy hunting dogs, seropositivity rates of 4% (2/50) and 2% (1/50) were recorded for Ap and Bb, respectively. One client-owned dog and one hunting dog, both healthy, were infected with Ap as determined by PCR, while being seronegative. For Bartonella spp., none of the dogs tested was positive by PCR. CONCLUSIONS: This study represents the first data of seroprevalence to tick borne diseases in the Finnish dog population. Our results indicate that dogs in Finland are exposed to vector borne diseases, with Ap being the most seroprevalent of the diseases tested, followed by Bb. Almost 50% of dogs living in Aland Islands were Ap seropositive. This finding suggests the possibility of a high incidence of Ap infection in humans in this region. Knowing the distribution of seroprevalence in dogs may help predict the pattern of a tick borne disease and may aid in diagnostic and prevention efforts.
Resumo:
Tick-borne encephalitis (TBE), a viral infection of the central nervous system, is endemic in many Eurasian countries. In Switzerland, TBE risk areas have been characterized by geographic mapping of clinical cases. Since mass vaccination should significantly decrease the number of TBE cases, alternative methods for exposure risk assessment are required. We established a new PCR-based test for the detection of TBE virus (TBEV) in ticks. The protocol involves an automated, high-throughput nucleic acid extraction method (QIAsymphony SP system) and a one-step duplex real-time reverse transcription-PCR (RT-PCR) assay for the detection of European subtype TBEV, including an internal process control. High usability, reproducibility, and equivalent performance for virus concentrations down to 5 x 10(3) viral genome equivalents/microl favor the automated protocol compared to the modified guanidinium thiocyanate-phenol-chloroform extraction procedure. The real-time RT-PCR allows fast, sensitive (limit of detection, 10 RNA copies/microl), and specific (no false-positive test results for other TBEV subtypes, other flaviviruses, or other tick-transmitted pathogens) detection of European subtype TBEV. The new detection method was applied in a national surveillance study, in which 62,343 Ixodes ricinus ticks were screened for the presence of TBE virus. A total of 38 foci of endemicity could be identified, with a mean virus prevalence of 0.46%. The foci do not fully agree with those defined by disease mapping. Therefore, the proposed molecular test procedure constitutes a prerequisite for an appropriate TBE surveillance. Our data are a unique complement of human TBE disease case mapping in Switzerland.
Resumo:
Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vectors. The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions. Environmental change, therefore, will alter host-pathogen-vector interactions and, consequently, the distribution, intensity, and dynamics of infectious diseases. Here, we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife. Climate change can have direct impacts on distribution, life cycle, and physiological status of hosts, pathogens and vectors. While a change in either host, pathogen or vector does not necessarily translate into an alteration of the disease, it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks. Finally, climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to, and climate change can combine with other environmental stressors to induce cumulative effects on infectious diseases. Overall, the influence of climate change on infectious diseases involves different mechanisms, it can be modulated by phenotypic acclimation and/or genotypic adaptation, it depends on the ecological context of the host-pathogen-vector interactions, and it can be modulated by impacts of other stressors. As a consequence of this complexity, non-linear responses of disease systems under climate change are to be expected. To improve predictions on climate change impacts on infectious disease, we suggest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physiological and ecological mechanisms which mediate climate change impacts on disease, and to the development of harmonized methods and approaches to obtain more comparable results, as this would support the discrimination of case-specific versus general mechanisms
Resumo:
Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. Using data from an extensive national survey of English grasslands, we show that surface soil (0–7 cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. Soil C stocks in the largest pool, of intermediate particle size (50–250 μm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0·45–50 μm), was explained by soil pH and the community abundance-weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N-rich vegetation. The C stock in the small active fraction (250–4000 μm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. Synthesis and applications. Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1–100 000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.
Resumo:
Species belonging to the Culicoides complexes (Diptera, Ceratopogonidae), obsoletus and pulicaris, in Switzerland, are potential vectors of both bluetongue virus (BTV) and African horse sickness virus (AHSV). The epidemic of BTV in 2006 and 2007 in Europe has highlighted the risk of introduction and spread of vector-borne diseases in previously non-endemic areas. As a measure of prevention, as part of an integrated control programme in the event of an outbreak of African horse sickness (AHS), it is of utmost importance to prevent, or substantially reduce, contact between horses and Culicoides. The aim of the present study was to compare the effect of three protection systems, net, fan, repellent, or combinations thereof, with regard to their potential to reduce contact between horses and Culicoides. Three different equine housing systems, including individual boxes (BX), group housing systems (GR), and individual boxes with permanently accessible paddock (BP) were used. The efficacy of the protection systems were evaluated by comparing the total number counts of collected female Culicoides, of non-blood-fed and blood-fed Culicoides, respectively, with UV black light traps. The study was conducted over 3 summer months during 2012 and 2013 each and focused on the efficacy and practicality of the protection systems. The repellent was tested in 2012 only and not further investigated in 2013, as it showed no significant effect in reducing Culicoides collected in the light traps. Net protection system provided the best overall protection for the total number of female Culicoides, non-blood-fed and blood-fed Culicoides in all tested housing systems. The net, with a pore size of 0.1825 mm(2), reduced the total number of Culicoides collected in the housing systems BP, GR and BX by 98%, 85% and 67%, respectively. However, in the GR housing system, no significant difference between the effectiveness of the fan and the net were determined for any of the three Culicoides categories. The results of the present study demonstrated that horse owners can substantially reduce their horses' exposure to Culicoides, by using net protection in the housing systems BX, BP and GR. In GR housing systems, protection against Culicoides using a fan is also recommended.
Resumo:
Tick-borne encephalitis (TBE) is one of the most dangerous human neurological infections occurring in Europe and Northern parts of Asia with thousands of cases and millions vaccinated against it. The risk of TBE might be assessed through analyses of the samples taken from wildlife or from animals which are in close contact with humans. Dogs have been shown to be a good sentinel species for these studies. Serological assays for diagnosis of TBE in dogs are mainly based on purified and inactivated TBEV antigens. Here we describe novel dog anti-TBEV IgG monoclonal antibody (MAb)-capture assay which is based on TBEV prME subviral particles expressed in mammalian cells from Semliki Forest virus (SFV) replicon as well as IgG immunofluorescence assay (IFA) which is based on Vero E6 cells transfected with the same SFV replicon. We further demonstrate their use in a small-scale TBEV seroprevalence study of dogs representing different regions of Finland. Altogether, 148 dog serum samples were tested by novel assays and results were compared to those obtained with a commercial IgG enzyme immunoassay (EIA), hemagglutination inhibition test and IgG IFA with TBEV infected cells. Compared to reference tests, the sensitivities of the developed assays were 90-100% and the specificities of the two assays were 100%. Analysis of the dog serum samples showed a seroprevalence of 40% on Åland Islands and 6% on Southwestern archipelago of Finland. In conclusion, a specific and sensitive EIA and IFA for the detection of IgG antibodies in canine sera were developed. Based on these assays the seroprevalence of IgG antibodies in dogs from different regions of Finland was assessed and was shown to parallel the known human disease burden as the Southwestern archipelago and Åland Islands in particular had considerable dog TBEV antibody prevalence and represent areas with high risk of TBE for humans.
Resumo:
Studies about the influence of patient characteristics on mechanical failure of cups in total hip replacement have applied different methodologies and revealed inconclusive results. The fixation mode has rarely been investigated. Therefore, we conducted a detailed analysis of the influence of patient characteristics and fixation mode on cup failure risks.
Resumo:
Economic theory distinguishes two concepts of utility: decision utility, objectively quantifiable by choices, and experienced utility, referring to the satisfaction by an obtainment. To date, experienced utility is typically measured with subjective ratings. This study intended to quantify experienced utility by global levels of neuronal activity. Neuronal activity was measured by means of electroencephalographic (EEG) responses to gain and omission of graded monetary rewards at the level of the EEG topography in human subjects. A novel analysis approach allowed approximating psychophysiological value functions for the experienced utility of monetary rewards. In addition, we identified the time windows of the event-related potentials (ERP) and the respective intracortical sources, in which variations in neuronal activity were significantly related to the value or valence of outcomes. Results indicate that value functions of experienced utility and regret disproportionally increase with monetary value, and thus contradict the compressing value functions of decision utility. The temporal pattern of outcome evaluation suggests an initial (∼250 ms) coarse evaluation regarding the valence, concurrent with a finer-grained evaluation of the value of gained rewards, whereas the evaluation of the value of omitted rewards emerges later. We hypothesize that this temporal double dissociation is explained by reward prediction errors. Finally, a late, yet unreported, reward-sensitive ERP topography (∼500 ms) was identified. The sources of these topographical covariations are estimated in the ventromedial prefrontal cortex, the medial frontal gyrus, the anterior and posterior cingulate cortex and the hippocampus/amygdala. The results provide important new evidence regarding “how,” “when,” and “where” the brain evaluates outcomes with different hedonic impact.
Phylogenetic and virulence analysis of tick-borne encephalitis virus field isolates from Switzerland
Resumo:
Tick-borne encephalitis (TBE) is an endemic disease in Switzerland, with about 110-120 reported human cases each year. Endemic areas are found throughout the country. However, the viruses circulating in Switzerland have not been characterized so far. In this study, the complete envelope (E) protein sequences and phylogenetic classification of 72 TBE viruses found in Ixodes ricinus ticks sampled at 39 foci throughout Switzerland were analyzed. All isolates belonged to the European subtype and were highly related (mean pairwise sequence identity of 97.8% at the nucleotide and 99.6% at the amino acid level of the E protein). Sixty-four isolates were characterized in vitro with respect to their plaque phenotype. More than half (57.8%) of isolates produced a mixture of plaques of different sizes, reflecting a heterogeneous population of virus variants. Isolates consistently forming plaques of small size were associated with recently detected endemic foci with no or only sporadic reports of clinical cases. All of six virus isolates investigated in an in vivo mouse model were highly neurovirulent (100% mortality) but exhibited a relatively low level of neuroinvasiveness, with mouse survival rates ranging from 50% to 100%. Therefore, TBE viruses circulating in Switzerland belong to the European subtype and are closely related. In vitro and in vivo surrogates suggest a high proportion of isolates with a relatively low level of virulence, which is in agreement with a hypothesized high proportion of subclinical or mild TBE infections.