2 resultados para conductive polymer

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A wirelessly controlled magnetic microrobot has been proposed to diagnose and treat pathologies in the posterior segment of the human eye. The robot consists of a magnetic CoNi platform with a conformal coating of functional polymers. Electrodeposition has been the preferred method to fabricate and to functionalize the microrobot. Poly(pyrrole), a widely studied intrinsically conductive polymer has been investigated as a biocompatible coating to reduce biofouling, and as a coating that can release incorporated drugs on demand. The mechanism of redox cycling has been investigated to reduce the stiction of NIH 3T3 fibroblasts onto poly(pyrrole) surfaces. To demonstrate triggered drug release, Rhodamine B has been incorporated into the Ppy matrix as a model drug. Rapid Rhodamine B release is obtained when eddy current losses are induced by alternating magnetic fields on the CoNi substrates underneath these films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramics are known to be chemically stable, and the possibility to electrically dope polymer-derived ceramics makes it a material of interest for implantable electrode applications. We investigated cytotoxic characteristics of four polymer-derived ceramic candidates with either electrically conductive or insulating properties. Cytotoxicity was assessed by culturing C2C12 myoblast cells under two conditions: by exposing them to material extracts and by putting them directly in contact with material samples. Cell spreading was optically evaluated by comparing microscope observations immediately after the materials insertion and after 24 h culturing. Cell viability (MTT) and mortality (LDH) were quantified after 24-h incubation in contact with the materials. Comparison was made with biocompatible positive references (alumina, platinum, biocompatible stainless steel 1.4435), negative references (latex, stainless steel 1.4301) and controls (no material present in the culture wells). We found that the cytotoxic properties of tested ceramics are comparable to established reference materials. These ceramics, which are reported to be very stable, can be microstructured and electrically doped to a wide range of conductivity and are thus excellent candidates for implantable electrode applications including pacemakers.