3 resultados para concurrent evidence
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A 15-year-old domestic shorthair cat was presented with severe haematuria, stranguria, anorexia and lethargy of 10 days' duration. Physical examination revealed a large painful urinary bladder and pain in the cranial abdomen. Abdominal ultrasound revealed severe generalised mural thickening of both the gall bladder and the urinary bladder. Lymphoma was diagnosed on cytology of urine sediment and fine-needle aspirates of the gall bladder. Despite a transitory clinical improvement and partial remission following chemotherapy, the cat was euthanased six weeks after initial presentation due to recurrent clinical signs. Post-mortem examination confirmed a B-cell lymphoma in the urinary bladder. This report is the first description of gall bladder and bladder lymphoma in a cat.
Resumo:
PURPOSE: We aimed at further elucidating whether aphasic patients' difficulties in understanding non-canonical sentence structures, such as Passive or Object-Verb-Subject sentences, can be attributed to impaired morphosyntactic cue recognition, and to problems in integrating competing interpretations. METHODS: A sentence-picture matching task with canonical and non-canonical spoken sentences was performed using concurrent eye tracking. Accuracy, reaction time, and eye tracking data (fixations) of 50 healthy subjects and 12 aphasic patients were analysed. RESULTS: Patients showed increased error rates and reaction times, as well as delayed fixation preferences for target pictures in non-canonical sentences. Patients' fixation patterns differed from healthy controls and revealed deficits in recognizing and immediately integrating morphosyntactic cues. CONCLUSION: Our study corroborates the notion that difficulties in understanding syntactically complex sentences are attributable to a processing deficit encompassing delayed and therefore impaired recognition and integration of cues, as well as increased competition between interpretations.
Resumo:
Studying individual differences in conscious awareness can potentially lend fundamental insights into the neural bases of binding mechanisms and consciousness (Cohen Kadosh and Henik, 2007). Partly for this reason, considerable attention has been devoted to the neural mechanisms underlying grapheme–color synesthesia, a healthy condition involving atypical brain activation and the concurrent experience of color photisms in response to letters, numbers, and words. For instance, the letter C printed in black on a white background may elicit a yellow color photism that is perceived to be spatially colocalized with the inducing stimulus or internally in the “mind's eye” as, for instance, a visual image. Synesthetic experiences are involuntary, idiosyncratic, and consistent over time (Rouw et al., 2011). To date, neuroimaging research on synesthesia has focused on brain areas activated during the experience of synesthesia and associated structural brain differences. However, activity patterns of the synesthetic brain at rest remain largely unexplored. Moreover, the neural correlates of synesthetic consistency, the hallmark characteristic of synesthesia, remain elusive.