69 resultados para concepts of knowledge
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Resumo:
The present study analyses transdisciplinary co-production of knowledge in the development of organic farming in Switzerland by using Fleck's theory of thought styles and thought collectives. Three different phases can be identified throughout the historical development. The initial phase lasting from the beginning of the 1920s to the early 1970s contains numerous characteristics of diverse well-established definitions and concepts of transdisciplinarity and represents a successful transdisciplinary process, which has not been perceived as such in the past and present scientific discussion. The second and third phases show an increasing segregation of thought collectives, caused by internal changes such as the establishment of specialised research institutions and external processes like agriculture policy and market development. These developments led to a decreasing degree of transdisciplinarity. We observe an ambiguous trend: the continuously growing and today well-established positive societal recognition of an initially rather little accepted newcomer movement is associated with the gradual loss of its very valuable forms of knowledge co-production and the related philosophical background. In order to maintain the various forms of transdisciplinary co-production of knowledge, one has to reflect not only their results or outcome but also the whole cooperation process, which has led to these results. The understanding of the historical development and characteristic features of knowledge co-production as presented in this study will help to reinforce transdisciplinary research in organic agriculture and research on transdisciplinarity in general.
Resumo:
Better access to knowledge and knowledge production has to be reconsidered as key to successful individual and social mitigation and adaptation strategies for global change. Indeed, concepts of sustainable development imply a transformation of science towards fostering democratisation of knowledge production and the development of knowledge societies as a strategic goal. This means to open the process of scientific knowledge production while simultaneously empowering people to implement their own visions for sustainable development. Advocates of sustainability science support this transformation. In transdisciplinary practice, they advance equity and accountability in the access to and production of knowledge at the science–society interface. UNESCO points to advancements, yet Northern dominance persists in knowledge production as well as in technology design and transfer. Further, transdisciplinary practice remains experimental and hampered by inadequate and asymmetrically equipped institutions in the North and South and related epistemological and operational obscurity. To help identify clear, practicable transdisciplinary approaches, I recommend examining the institutional route – i.e., the learning and adaptation process – followed in concrete cases. The transdisciplinary Eastern and Southern Africa Partnership Programme (1998–2013) is a case ripe for such examination. Understanding transdisciplinarity as an integrative approach, I highlight ESAPP’s three key principles for a more democratised knowledge production for sustainable development: (1) integration of scientific and “non-scientific” knowledge systems; (2) integration of social actors and institutions; and (3) integrative learning processes. The analysis reveals ESAPP’s achievements in contributing to more democratic knowledge production and South ownership in the realm of sustainable development.
Resumo:
Better access to knowledge and knowledge production has to be reconsidered as key to successful individual and social mitigation and adaptation strategies for global change. Indeed, concepts of sustainable development imply a transformation of science (Lubchenco 1998; WBGU 2011 and 2012) towards fostering democratisation of knowledge production as a contribution to the development of knowledge societies as a strategic goal (UNESCO 2005). This means to open the process of scientific knowledge production while simultaneously empowering people to implement their own visions for sustainable development. Advocates of sustainability science support this transformation. In transdisciplinary practice, they advance equity and accountability in the access to and production of knowledge at the science–society interface (Hirsch Hadorn et al 2006; Hirsch Hadorn et al 2008; Jäger 2009; Adger and Jordan 2009; KFPE 2012). UNESCO (2010) points to advancements, yet Northern dominance persists in knowledge production as well as in technology design and transfer (Standing and Taylor 2007; Zingerli 2010). Further, transdisciplinary practice remains experimental and hampered by inadequate and asymmetrically equipped institutions in the North and South and related epistemological and operational obscurity (Wiesmann et al 2011). To help identify clear, practicable transdisciplinary approaches, I recommend examining the institutional route (Mukhopadhyay et al 2006) – i.e., the learning and adaptation process – followed in concrete cases. The transdisciplinary Eastern and Southern Africa Partnership Programme (1998–2013) is a case ripe for such examination. Understanding transdisciplinarity as an integrative approach (Pohl et al 2008; Stock and Burton 2011), I highlight ESAPP’s three key principles for a more democratised knowledge production for sustainable development: (1) integration of scientific and “non-scientific” knowledge systems; (2) integration of social actors and institutions; and (3) integrative learning processes. The analysis reveals ESAPP’s achievements in contributing to more democratic knowledge production and South ownership in the realm of sustainable development.
Resumo:
A vast amount of temporal information is provided on the Web. Even though many facts expressed in documents are time-related, the temporal properties of Web presentations have not received much attention. In database research, temporal databases have become a mainstream topic in recent years. In Web documents, temporal data may exist as meta data in the header and as user-directed data in the body of a document. Whereas temporal data can easily be identified in the semi-structured meta data, it is more difficult to determine temporal data and its role in the body. We propose procedures for maintaining temporal integrity of Web pages and outline different approaches of applying bitemporal data concepts for Web documents. In particular, we regard desirable functionalities of Web repositories and other Web-related tools that may support the Webmasters in managing the temporal data of their Web documents. Some properties of a prototype environment are described.