10 resultados para compressive
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To investigate causes of the lack of clinical improvement after thoracolumbar disc surgery. STUDY DESIGN: Case-control magnetic resonance imaging (MRI) study. ANIMALS: Chondrodystrophic dogs with acute thoracolumbar disc disease treated by hemilaminectomy: 10 that had no short-term clinical improvement and 12 with "normal" clinical improvement. METHODS: Dogs that had surgery for treatment of intervertebral disc extrusion (2003-2008) where thoracolumbar disc disease was confirmed by MRI were evaluated to identify dogs that had lack of clinical improvement after surgery. Ten dogs with delayed recovery or clinical deterioration were reexamined with MRI and compared with 12 dogs with normal recovery and MRI reexamination after 6 weeks (control group). RESULTS: Of 173 dogs, 10 (5.8%) had clinical deterioration within 1-10 days after surgery. In 8 dogs, residual spinal cord compression was identified on MRI. Bleeding was present in 1 dog. In 3 dogs, the cause was an incorrect approach and insufficient disc material removal. In 3 dogs, recurrence occurred at the surgical site. In 1 dog, the centrally located extruded material was shifted to the contralateral side during surgery. These 8 dogs had repeat surgery and recovery was uneventful. In 2 dogs, deterioration could not be associated with a compressive disc lesion. Hemorrhagic myelomalacia was confirmed by pathologic examination in 1 dog. The other dog recovered after 6 months of conservative management. CONCLUSION: Delayed postsurgical recovery or deterioration is commonly associated with newly developed and/or remaining compressive disc lesion. CLINICAL RELEVANCE: We recommend early MRI reexamination to assess the postsurgical spinal canal and cord, and to plan further therapeutic measures in chondrodystrophic dogs with delayed recovery after decompressive hemilaminectomy for thoracolumbar disc disease.
Resumo:
One goal of interbody fusion is to increase the height of the degenerated disc space. Interbody cages in particular have been promoted with the claim that they can maintain the disc space better than other methods. There are many factors that can affect the disc height maintenance, including graft or cage design, the quality of the surrounding bone and the presence of supplementary posterior fixation. The present study is an in vitro biomechanical investigation of the compressive behaviour of three different interbody cage designs in a human cadaveric model. The effect of bone density and posterior instrumentation were assessed. Thirty-six lumbar functional spinal units were instrumented with one of three interbody cages: (1) a porous titanium implant with endplate fit (Stratec), (2) a porous, rectangular carbon-fibre implant (Brantigan) and (3) a porous, cylindrical threaded implant (Ray). Posterior instrumentation (USS) was applied to half of the specimens. All specimens were subjected to axial compression displacement until failure. Correlations between both the failure load and the load at 3 mm displacement with the bone density measurements were observed. Neither the cage design nor the presence of posterior instrumentation had a significant effect on the failure load. The loads at 3 mm were slightly less for the Stratec cage, implying lower axial stiffness, but were not different with posterior instrumentation. The large range of observed failure loads overlaps the potential in vivo compressive loads, implying that failure of the bone-implant interface may occur clinically. Preoperative measurements of bone density may be an effective tool to predict settling around interbody cages.
Resumo:
Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work.
Resumo:
Computer tomography (CT)-based finite element (FE) models assess vertebral strength better than dual energy X-ray absorptiometry. Osteoporotic vertebrae are usually loaded via degenerated intervertebral discs (IVD) and potentially at higher risk under forward bending, but the influences of the IVD and loading conditions are generally overlooked. Accordingly, magnetic resonance imaging was performed on 14 lumbar discs to generate FE models for the healthiest and most degenerated specimens. Compression, torsion, bending, flexion and extension conducted experimentally were used to calibrate both models. They were combined with CT-based FE models of 12 lumbar vertebral bodies to evaluate the effect of disc degeneration compared to a loading via endplates embedded in a stiff resin, the usual experimental paradigm. Compression and lifting were simulated, load and damage pattern were evaluated at failure. Adding flexion to the compression (lifting) and higher disc degeneration reduces the failure load (8–14%, 5–7%) and increases damage in the vertebrae. Under both loading scenarios, decreasing the disc height slightly increases the failure load; embedding and degenerated IVD provides respectively the highest and lowest failure load. Embedded vertebrae are more brittle, but failure loads induced via IVDs correlate highly with vertebral strength. In conclusion, osteoporotic vertebrae with degenerated IVDs are consistently weaker—especially under lifting, but clinical assessment of their strength is possible via FE analysis without extensive disc modelling, by extrapolating measures from the embedded situation.
Resumo:
This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 [Formula: see text]m CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 [Formula: see text]W of power within an effective area of 250 [Formula: see text]m × 250 [Formula: see text]m per channel.