60 resultados para compensatory
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The paralysis-by-analysis phenomenon, i.e., attending to the execution of one's movement impairs performance, has gathered a lot of attention over recent years (see Wulf, 2007, for a review). Explanations of this phenomenon, e.g., the hypotheses of constrained action (Wulf et al., 2001) or of step-by-step execution (Masters, 1992; Beilock et al., 2002), however, do not refer to the level of underlying mechanisms on the level of sensorimotor control. For this purpose, a “nodal-point hypothesis” is presented here with the core assumption that skilled motor behavior is internally based on sensorimotor chains of nodal points, that attending to intermediate nodal points leads to a muscular re-freezing of the motor system at exactly and exclusively these points in time, and that this re-freezing is accompanied by the disruption of compensatory processes, resulting in an overall decrease of motor performance. Two experiments, on lever sequencing and basketball free throws, respectively, are reported that successfully tested these time-referenced predictions, i.e., showing that muscular activity is selectively increased and compensatory variability selectively decreased at movement-related nodal points if these points are in the focus of attention.
Resumo:
Individuals show compensatory health behavior (e.g. safer cycling without helmet) to compensate for risky behavior. Compensatory health behavior is facilitated by high self-efficacy. A total of 134 cyclists with different helmet wearing frequencies (occasionally (OH) or never helmet (NH)) were asked to fill out a questionnaire on their compensatory health behavior when cycling without a helmet and on their general self-efficacy. An interaction between self-efficacy and use of a helmet on compensatory health behavior was found. OH-users with high self-efficacy showed more compensatory health behavior than OH-users with low self-efficacy. This effect was not present in NH-users. We assume that OH-users engage in compensatory health behavior, whereas NH-users remain unprotected by behavioral adaptation. These persons are vulnerable and may require specific attention in preventive actions.
Resumo:
In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.
Resumo:
Upon attack by leaf herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated induced resource allocation in maize plants that are infested by the larvae Western corn rootworm Diabrotica virgifera virgifera. Using radioactive 11CO2, we demonstrate that root-attacked maize plants allocate more new 11C carbon from source leaves to stems, but not to roots. Reduced meristematic activity and reduced invertase activity in attacked maize root systems are identified as possible drivers of this shoot reallocation response. The increased allocation of photoassimilates to stems is shown to be associated with a marked thickening of these tissues and increased growth of stem-borne crown roots. A strong quantitative correlation between stem thickness and root regrowth across different watering levels suggests that retaining photoassimilates in the shoots may help root-attacked plants to compensate for the loss of belowground tissues. Taken together, our results indicate that induced tolerance may be an important strategy of plants to withstand belowground attack. Furthermore, root herbivore-induced carbon reallocation needs to be taken into account when studying plant-mediated interactions between herbivores.
Resumo:
Objective: Compensatory health beliefs (CHBs), defined as beliefs that healthy behaviours can compensate for unhealthy behaviours, may be one possible factor hindering people in adopting a healthier lifestyle. This study examined the contribution of CHBs to the prediction of adolescents’ physical activity within the theoretical framework of the Health Action Process Approach (HAPA). Design: The study followed a prospective survey design with assessments at baseline (T1) and two weeks later (T2). Method: Questionnaire data on physical activity, HAPA variables and CHBs were obtained twice from 430 adolescents of four different Swiss schools. Multilevel modelling was applied. Results: CHBs added significantly to the prediction of intentions and change in intentions, in that higher CHBs were associated with lower intentions to be physically active at T2 and a reduction in intentions from T1 to T2. No effect of CHBs emerged for the prediction of self-reported levels of physical activity at T2 and change in physical activity from T1 to T2. Conclusion: Findings emphasise the relevance of examining CHBs in the context of an established health behaviour change model and suggest that CHBs are of particular importance in the process of intention formation.
Resumo:
The head impulse test (HIT) can identify a deficient vestibulo-ocular reflex (VOR) by the compensatory saccade (CS) generated once the head stops moving. The inward HIT is considered safer than the outward HIT, yet might have an oculomotor advantage given that the subject would presumably know the direction of head rotation. Here, we compare CS latencies following inward (presumed predictable) and outward (more unpredictable) HITs after acute unilateral vestibular nerve deafferentation. Seven patients received inward and outward HITs delivered at six consecutive postoperative days (POD) and again at POD 30. All head impulses were recorded by portable video-oculography. CS included those occurring during (covert) or after (overt) head rotation. Inward HITs included mean CS latencies (183.48 ms ± 4.47 SE) that were consistently shorter than those generated during outward HITs in the first 6 POD (p = 0.0033). Inward HITs induced more covert saccades compared to outward HITs, acutely. However, by POD 30 there were no longer any differences in latencies or proportions of CS and direction of head rotation. Patients with acute unilateral vestibular loss likely use predictive cues of head direction to elicit early CS to keep the image centered on the fovea. In acute vestibular hypofunction, inwardly applied HITs may risk a preponderance of covert saccades, yet this difference largely disappears within 30 days. Advantages of inwardly applied HITs are discussed and must be balanced against the risk of a false-negative HIT interpretation.
Resumo:
Reduced motor activity has been reported in schizophrenia and was associated with subtype, psychopathology and medication. Still, little is known about the neurobiology of motor retardation. To identify neural correlates of motor activity, resting state cerebral blood flow (CBF) was correlated with objective motor activity of the same day. Participants comprised 11 schizophrenia patients and 14 controls who underwent magnetic resonance imaging with arterial spin labeling and wrist actigraphy. Patients had reduced activity levels and reduced perfusion of the left parahippocampal gyrus, left middle temporal gyrus, right thalamus, and right prefrontal cortex. In controls, but not in schizophrenia, CBF was correlated with activity in the right thalamic ventral anterior (VA) nucleus, a key module within basal ganglia-cortical motor circuits. In contrast, only in schizophrenia patients positive correlations of CBF and motor activity were found in bilateral prefrontal areas and in the right rostral cingulate motor area (rCMA). Grey matter volume correlated with motor activity only in the left posterior cingulate cortex of the patients. The findings suggest that basal ganglia motor control is impaired in schizophrenia. In addition, CBF of cortical areas critical for motor control was associated with volitional motor behavior, which may be a compensatory mechanism for basal ganglia dysfunction.
Resumo:
OBJECTIVES: To compare the gene expression profile of osseointegration associated with a moderately rough and a chemically modified hydrophilic moderately rough surface in a human model. MATERIAL AND METHODS: Eighteen solid screw-type cylindrical titanium implants, 4 mm long and 2.8 mm wide, with either a moderately rough (SLA) or a chemically modified moderately rough (SLActive) surface were surgically inserted in the retromolar area of nine human volunteers. The devices were removed using a trephine following 4, 7 and 14 days of healing. The tissue surrounding the implant was harvested, total RNA was extracted and microarray analysis was carried out to identify the differences in the transcriptome between the SLA and SLActive surfaces at days 4, 7 and 14. RESULTS: There were no functionally relevant gene ontology categories that were over-represented in the list of genes that were differentially expressed at day 4. However, by day 7, osteogenesis- and angiogenesis-associated gene expression were up-regulated on the SLActive surface. Osteogenesis and angiogenesis appeared to be regulated by BMP and VEGF signalling, respectively. By day 14, VEGF signalling remains up-regulated on the SLActive surface, while BMP signalling was up-regulated on the SLA surface in what appeared to be a delayed compensatory response. Furthermore, neurogenesis was a prominent biological process within the list of differentially expressed genes, and it was influenced by both surfaces. CONCLUSIONS: Compared with SLA, SLActive exerts a pro-osteogenic and pro-angiogenic influence on gene expression at day 7 following implant insertion, which may be responsible for the superior osseointegrative properties of this surface.