8 resultados para community stability
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Human land use may detrimentally affect biodiversity, yet long-term stability of species communities is vital for maintaining ecosystem functioning. Community stability can be achieved by higher species diversity (portfolio effect), higher asynchrony across species (insurance hypothesis) and higher abundance of populations. However, the relative importance of these stabilizing pathways and whether they interact with land use in real-world ecosystems is unknown. We monitored inter-annual fluctuations of 2,671 plant, arthropod, bird and bat species in 300 sites from three regions. Arthropods show 2.0-fold and birds 3.7-fold higher community fluctuations in grasslands than in forests, suggesting a negative impact of forest conversion. Land-use intensity in forests has a negative net impact on stability of bats and in grasslands on birds. Our findings demonstrate that asynchrony across species—much more than species diversity alone—is the main driver of variation in stability across sites and requires more attention in sustainable management.
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.
Resumo:
Characterization of spatial and temporal variation in grassland productivity and nutrition is crucial for a comprehensive understanding of ecosystem function. Although within-site heterogeneity in soil and plant properties has been shown to be relevant for plant community stability, spatiotemporal variability in these factors is still understudied in temperate grasslands. Our study aimed to detect if soil characteristics and plant diversity could explain observed small-scale spatial and temporal variability in grassland productivity, biomass nutrient concentrations, and nutrient limitation. Therefore, we sampled 360 plots of 20 cm × 20 cm each at six consecutive dates in an unfertilized grassland in Southern Germany. Nutrient limitation was estimated using nutrient ratios in plant biomass. Absolute values of, and spatial variability in, productivity, biomass nutrient concentrations, and nutrient limitation were strongly associated with sampling date. In April, spatial heterogeneity was high and most plots showed phosphorous deficiency, while later in the season nitrogen was the major limiting nutrient. Additionally, a small significant positive association between plant diversity and biomass phosphorus concentrations was observed, but should be tested in more detail. We discuss how low biological activity e.g., of soil microbial organisms might have influenced observed heterogeneity of plant nutrition in early spring in combination with reduced active acquisition of soil resources by plants. These early-season conditions are particularly relevant for future studies as they differ substantially from more thoroughly studied later season conditions. Our study underlines the importance of considering small spatial scales and temporal variability to better elucidate mechanisms of ecosystem functioning and plant community assembly.
Further re-analyses looking for effects of phylogenetic diversity on community biomass and stability
Resumo:
The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands
Resumo:
BACKGROUND Community-acquired pneumonia (CAP) is the third-leading infectious cause of death worldwide. The standard treatment of CAP has not changed for the past fifty years and its mortality and morbidity remain high despite adequate antimicrobial treatment. Systemic corticosteroids have anti-inflammatory effects and are therefore discussed as adjunct treatment for CAP. Available studies show controversial results, and the question about benefits and harms of adjunct corticosteroid therapy has not been conclusively resolved, particularly in the non-critical care setting. METHODS/DESIGN This randomized multicenter study compares a treatment with 7 days of prednisone 50 mg with placebo in adult patients hospitalized with CAP independent of severity. Patients are screened and enrolled within the first 36 hours of presentation after written informed consent is obtained. The primary endpoint will be time to clinical stability, which is assessed every 12 hours during hospitalization. Secondary endpoints will be, among others, all-cause mortality within 30 and 180 days, ICU stay, duration of antibiotic treatment, disease activity scores, side effects and complications, value of adrenal function testing and prognostic hormonal and inflammatory biomarkers to predict outcome and treatment response to corticosteroids. Eight hundred included patients will provide an 85% power for the intention-to-treat analysis of the primary endpoint. DISCUSSION This largest to date double-blind placebo-controlled multicenter trial investigates the effect of adjunct glucocorticoids in 800 patients with CAP requiring hospitalization. It aims to give conclusive answers about benefits and risks of corticosteroid treatment in CAP. The inclusion of less severe CAP patients will be expected to lead to a relatively low mortality rate and survival benefit might not be shown. However, our study has adequate power for the clinically relevant endpoint of clinical stability. Due to discontinuing glucocorticoids without tapering after seven days, we limit duration of glucocorticoid exposition, which may reduce possible side effects. TRIAL REGISTRATION 7 September 2009 on ClinicalTrials.gov: NCT00973154.
Resumo:
BACKGROUND Clinical trials yielded conflicting data about the benefit of adding systemic corticosteroids for treatment of community-acquired pneumonia. We assessed whether short-term corticosteroid treatment reduces time to clinical stability in patients admitted to hospital for community-acquired pneumonia. METHODS In this double-blind, multicentre, randomised, placebo-controlled trial, we recruited patients aged 18 years or older with community-acquired pneumonia from seven tertiary care hospitals in Switzerland within 24 h of presentation. Patients were randomly assigned (1:1 ratio) to receive either prednisone 50 mg daily for 7 days or placebo. The computer-generated randomisation was done with variable block sizes of four to six and stratified by study centre. The primary endpoint was time to clinical stability defined as time (days) until stable vital signs for at least 24 h, and analysed by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00973154. FINDINGS From Dec 1, 2009, to May 21, 2014, of 2911 patients assessed for eligibility, 785 patients were randomly assigned to either the prednisone group (n=392) or the placebo group (n=393). Median time to clinical stability was shorter in the prednisone group (3·0 days, IQR 2·5-3·4) than in the placebo group (4·4 days, 4·0-5·0; hazard ratio [HR] 1·33, 95% CI 1·15-1·50, p<0·0001). Pneumonia-associated complications until day 30 did not differ between groups (11 [3%] in the prednisone group and 22 [6%] in the placebo group; odds ratio [OR] 0·49 [95% CI 0·23-1·02]; p=0·056). The prednisone group had a higher incidence of in-hospital hyperglycaemia needing insulin treatment (76 [19%] vs 43 [11%]; OR 1·96, 95% CI 1·31-2·93, p=0·0010). Other adverse events compatible with corticosteroid use were rare and similar in both groups. INTERPRETATION Prednisone treatment for 7 days in patients with community-acquired pneumonia admitted to hospital shortens time to clinical stability without an increase in complications. This finding is relevant from a patient perspective and an important determinant of hospital costs and efficiency. FUNDING Swiss National Science Foundation, Viollier AG, Nora van Meeuwen Haefliger Stiftung, Julia und Gottfried Bangerter-Rhyner Stiftung.
Resumo:
1. Recent theoretical studies suggest that the stability of ecosystem processes is not governed by diversity per se, but by multitrophic interactions in complex communities. However, experimental evidence supporting this assumption is scarce.2. We investigated the impact of plant diversity and the presence of above- and below-ground invertebrates on the stability of plant community productivity in space and time, as well as the interrelationship between both stability measures in experimental grassland communities.3. We sampled above-ground plant biomass on subplots with manipulated above- and below-ground invertebrate densities of a grassland biodiversity experiment (Jena Experiment) 1, 4 and 6 years after the establishment of the treatments to investigate temporal stability. Moreover, we harvested spatial replicates at the last sampling date to explore spatial stability.4. The coefficient of variation of spatial and temporal replicates served as a proxy for ecosystem stability. Both spatial and temporal stability increased to a similar extent with plant diversity. Moreover, there was a positive correlation between spatial and temporal stability, and elevated plant density might be a crucial factor governing the stability of diverse plant communities.5. Above-ground insects generally increased temporal stability, whereas impacts of both earthworms and above-ground insects depended on plant species richness and the presence of grasses. These results suggest that inconsistent results of previous studies on the diversity–stability relationship have in part been due to neglecting higher trophic-level interactions governing ecosystem stability.6. Changes in plant species diversity in one trophic level are thus unlikely to mirror changes in multitrophic interrelationships. Our results suggest that both above- and below-ground invertebrates decouple the relationship between spatial and temporal stability of plant community productivity by differently affecting the homogenizing mechanisms of plants in diverse plant communities.7.Synthesis. Species extinctions and accompanying changes in multitrophic interactions are likely to result not only in alterations in the magnitude of ecosystem functions but also in its variability complicating the assessment and prediction of consequences of current biodiversity loss.