5 resultados para community nurse, compression bandaging, compliance
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To evaluate the ease of application of two-piece, graduated, compression systems for the treatment of venous ulcers. METHODS: Four kits used to provide limb compression in the management of venous ulcers were evaluated. These have been proven to be non-inferior to various types of bandages in clinical trials. The interface pressure exerted above the ankle by the under-stocking and the complete compression system and the force required to pull the over-stocking off were assessed in vitro. Ease of application of the four kits was evaluated in four sessions by five nurses who put stockings on their own legs in a blinded manner. They expressed their assessment of the stockings using a series of visual analogue scales (VASs). RESULTS: The Sigvaris Ulcer X((R)) kit provided a mean interface pressure of 46 mmHg and required a force in the range of 60-90 N to remove it. The Mediven((R)) ulcer kit exerted the same pressure but required force in the range of 150-190 N to remove it. Two kits (SurePress((R)) Comfort and VenoTrain((R)) Ulcertec) exerted a mean pressure of only 25 mmHg and needed a force in the range of 100-160 N to remove them. Nurses judged the Ulcer X and SurePress kits easiest to apply. Application of the VenoTrain kit was found slightly more difficult. The Mediven kit was judged to be difficult to use. CONCLUSIONS: Comparison of ease of application of compression-stocking kits in normal legs revealed marked differences between them. Only one system exerted a high pressure and was easy to apply. Direct comparison of these compression kits in leg-ulcer patients is required to assess whether our laboratory findings correlate with patient compliance and ulcer healing.
Resumo:
Despite changes in patient demographics and short-ened length of hospital stay deep vein thrombosis (DVT) remains a major health care problem which may lead to a variety of other high risk complications. Current treatment guidelines focus on preventive measures. Beside drug therapy, physical measures executed by nursing professionals exist, the outcomes of which are discussed controversially. Based on 25 studies that were found in MEDLINE and the Cochrane library, this systematic literature review identifies the effectiveness of intermittent pneumatic compression (IPC) on thrombosis prophylaxis. In almost all medical settings IPC contributes to a significant reduction of the incidence of DVT. At the same time, IPC has minimal negative side effects and is also cost effective. Correct application of IPC and patient compliance are essential to achieve its effectiveness. An increased awareness within the healthcare team in identifying the risk for and implementing measures against DVT is needed. Guidelines need to be developed in order to improve the effectiveness of thrombosis prophylaxis with the implementation of IPC.
Resumo:
STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.
Resumo:
Previous syntheses on the effects of environmental conditions on the outcome of plant-plant interactions summarize results from pairwise studies. However, the upscaling to the community-level of such studies is problematic because of the existence of multiple species assemblages and species-specific responses to both the environmental conditions and the presence of neighbors. We conducted the first global synthesis of community-level studies from harsh environments, which included data from 71 alpine and 137 dryland communities to: (i) test how important are facilitative interactions as a driver of community structure, (ii) evaluate whether we can predict the frequency of positive plant-plant interactions across differing environmental conditions and habitats, and (iii) assess whether thresholds in the response of plant-plant interactions to environmental gradients exists between ``moderate'' and ``extreme'' environments. We also used those community-level studies performed across gradients of at least three points to evaluate how the average environmental conditions, the length of the gradient studied, and the number of points sampled across such gradient affect the form and strength of the facilitation-environmental conditions relationship. Over 25% of the species present were more spatially associated to nurse plants than expected by chance in both alpine and chyland areas, illustrating the high importance of positive plant-plant interactions for the maintenance of plant diversity in these environments. Facilitative interactions were more frequent, and more related to environmental conditions, in alpine than in dryland areas, perhaps because drylands are generally characterized by a larger variety of environmental stress factors and plant functional traits. The frequency of facilitative interactions in alpine communities peaked at 1000 mm of annual rainfall, and globally decreased with elevation. The frequency of positive interactions in dtyland communities decreased globally with water scarcity or temperature annual range. Positive facilitation-drought stress relationships are more likely in shorter regional gradients, but these relationships are obscured in regions with a greater species turnover or with complex environmental gradients. By showing the different climatic drivers and behaviors of plant-plant interactions in dryland and alpine areas, our results will improve predictions regarding the effect of facilitation on the assembly of plant communities and their response to changes in environmental conditions.
Resumo:
We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between c. 100 and 400 μm. Analysis of grain shape factors shows that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling. Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil. Most materials have an internal cohesion in the order of 20–100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C < 20 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density after sifting, which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains.