31 resultados para communication networks

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Information-centric networking (ICN) is a new communication paradigm that aims at increasing security and efficiency of content delivery in communication networks. In recent years, many research efforts in ICN have focused on caching strategies to reduce traffic and increase overall performance by decreasing download times. Since caches need to operate at line speed, they have only a limited size and content can only be stored for a short time. However, if content needs to be available for a longer time, e.g., for delay-tolerant networking or to provide high content availability similar to content delivery networks (CDNs), persistent caching is required. We base our work on the Content-Centric Networking (CCN) architecture and investigate persistent caching by extending the current repository implementation in CCNx. We show by extensive evaluations in a YouTube and webserver traffic scenario that repositories can be efficiently used to increase content availability by significantly increasing cache hit rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information-centric networking (ICN) is a new communication paradigm that aims at increasing security and efficiency of content delivery in communication networks. In recent years, many research efforts in ICN have focused on caching strategies to reduce traffic and increase overall performance by decreasing download times. Since caches need to operate at line-speed, they have only a limited size and content can only be stored for a short time. However, if content needs to be available for a longer time, e.g., for delay-tolerant networking or to provide high content availability similar to content delivery networks (CDNs), persistent caching is required. We base our work on the Content-Centric Networking (CCN) architecture and investigate persistent caching by extending the current repository implementation in CCNx. We show by extensive evaluations in a YouTube and webserver traffic scenario that repositories can be efficiently used to increase content availability by significantly increasing the cache hit rates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy efficiency is a major concern in the design of Wireless Sensor Networks (WSNs) and their communication protocols. As the radio transceiver typically accounts for a major portion of a WSN node’s power consumption, researchers have proposed Energy-Efficient Medium Access (E2-MAC) protocols that switch the radio transceiver off for a major part of the time. Such protocols typically trade off energy-efficiency versus classical quality of service parameters (throughput, latency, reliability). Today’s E2-MAC protocols are able to deliver little amounts of data with a low energy footprint, but introduce severe restrictions with respect to throughput and latency. Regrettably, they yet fail to adapt to varying traffic load at run-time. This paper presents MaxMAC, an E2-MAC protocol that targets at achieving maximal adaptivity with respect to throughput and latency. By adaptively tuning essential parameters at run-time, the protocol reaches the throughput and latency of energy-unconstrained CSMA in high-traffic phases, while still exhibiting a high energy-efficiency in periods of sparse traffic. The paper compares the protocol against a selection of today’s E2-MAC protocols and evaluates its advantages and drawbacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localization is information of fundamental importance to carry out various tasks in the mobile robotic area. The exact degree of precision required in the localization depends on the nature of the task. The GPS provides global position estimation but is restricted to outdoor environments and has an inherent imprecision of a few meters. In indoor spaces, other sensors like lasers and cameras are commonly used for position estimation, but these require landmarks (or maps) in the environment and a fair amount of computation to process complex algorithms. These sensors also have a limited field of vision. Currently, Wireless Networks (WN) are widely available in indoor environments and can allow efficient global localization that requires relatively low computing resources. However, the inherent instability in the wireless signal prevents it from being used for very accurate position estimation. The growth in the number of Access Points (AP) increases the overlap signals areas and this could be a useful means of improving the precision of the localization. In this paper we evaluate the impact of the number of Access Points in mobile nodes localization using Artificial Neural Networks (ANN). We use three to eight APs as a source signal and show how the ANNs learn and generalize the data. Added to this, we evaluate the robustness of the ANNs and evaluate a heuristic to try to decrease the error in the localization. In order to validate our approach several ANNs topologies have been evaluated in experimental tests that were conducted with a mobile node in an indoor space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using multicast communication in Wireless Sensor Networks (WSNs) is an efficient way to disseminate the same data (from one sender) to multiple receivers, e.g., transmitting code updates to a group of sensor nodes. Due to the nature of code update traffic a multicast protocol has to support bulky traffic and end-to-end reliability. We are interested in an energy-efficient multicast protocol due to the limited resources of wireless sensor nodes. Current data dissemination schemes do not fulfill the above requirements. In order to close the gap, we designed and implemented the SNOMC (Sensor Node Overlay Multicast) protocol. It is an overlay multicast protocol, which supports reliable, time-efficient, and energy-efficient data dissemination of bulky data from one sender to many receivers. To ensure end-to-end reliability, SNOMC uses a NACK-based reliability mechanism with different caching strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To interconnect a wireless sensor network (WSN) to the Internet, we propose to use TCP/IP as the standard protocol for all network entities. We present a cross layer designed communication architecture, which contains a MAC protocol, IP, a new protocol called Hop-to-Hop Reliability (H2HR) protocol, and the TCP Support for Sensor Nodes (TSS) protocol. The MAC protocol implements the MAC layer of beacon-less personal area networks (PANs) as defined in IEEE 802.15.4. H2HR implements hop-to-hop reliability mechanisms. Two acknowledgment mechanisms, explicit and implicit ACK are supported. TSS optimizes using TCP in WSNs by implementing local retransmission of TCP data packets, local TCP ACK regeneration, aggressive TCP ACK recovery, congestion and flow control algorithms. We show that H2HR increases the performance of UDP, TCP, and RMST in WSNs significantly. The throughput is increased and the packet loss ratio is decreased. As a result, WSNs can be operated and managed using TCP/IP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 1 diabetes mellitus is a chronic disease characterized by blood glucose levels out of normal range due to inability of insulin production. This dysfunction leads to many short- and long-term complications. In this paper, a system for tele-monitoring and tele-management of Type 1 diabetes patients is proposed, aiming at reducing the risk of diabetes complications and improving quality of life. The system integrates Wireless Personal Area Networks (WPAN), mobile infrastructure, and Internet technology along with commercially available and novel glucose measurement devices, advanced modeling techniques, and tools for the intelligent processing of the available diabetes patients information. The integration of the above technologies enables intensive monitoring of blood glucose levels, treatment optimisation, continuous medical care, and improvement of quality of life for Type 1 diabetes patients, without restrictions in everyday life activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMN) have proven to be a key technology for increased network coverage of Internet infrastructures. The development process for new protocols and architectures in the area of WMN is typically split into evaluation by network simulation and testing of a prototype in a test-bed. Testing a prototype in a real test-bed is time-consuming and expensive. Irrepressible external interferences can occur which makes debugging difficult. Moreover, the test-bed usually supports only a limited number of test topologies. Finally, mobility tests are impractical. Therefore, we propose VirtualMesh as a new testing architecture which can be used before going to a real test-bed. It provides instruments to test the real communication software including the network stack inside a controlled environment. VirtualMesh is implemented by capturing real traffic through a virtual interface at the mesh nodes. The traffic is then redirected to the network simulator OMNeT++. In our experiments, VirtualMesh has proven to be scalable and introduces moderate delays. Therefore, it is suitable for predeployment testing of communication software for WMNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linking the physical world to the Internet, also known as the Internet of Things, has increased available information and services in everyday life and in the Enterprise world. In Enterprise IT an increasing number of communication is done between IT backend systems and small IoT devices, for example sensor networks or RFID readers. This introduces some challenges in terms of complexity and integration. We are working on the integration of IoT devices into Enterprise IT by leveraging SOA techniques and Semantic Web technologies. We present a SOA based integration platform for connecting WSNs and large enterprise business processes. For ensuring interoperability our platform is based on Linked Services. These are thoroughly described, machine-readable, machine-reasonable service descriptions.