20 resultados para colloids, charge renormalization, nucleation, crystal growth, microscopy, light scattering

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA can serve as a versatile scaffold for chromophore assemblies. For example, light-harvesting antennae have been realized by incorporating phenanthrene and pyrene building blocks into DNA strands. It was shown that by exciting at 320 nm (absorption of phenanthrene), an emission at 450 nm is observed which corresponds to a phenanthrene-pyrene exciplex. The more phenanthrenes are added into the DNA duplex, the higher is the fluorescence intensity with no significant change in quantum yield. This shows that phenanthrene acts as a donor and efficiently transfers the excitation energy to the pyrene. Up to now, the mechanism of this energy transfer and exciplex formation is not known. Therefore, we first aim at studying the photo-cycle of such DNA assemblies through transient absorption spectroscopy. Based on the results, we will explore ways to manipulate the energy transfer by application of intense THz fields. Ground as well as excited state Stark effect dynamics will be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion–photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for γ⁎γ⁎→ππ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on dispersion theory, we present a formalism for a model-independent evaluation of the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. In particular, we comment on the definition of the pion pole in this framework and provide a master formula that relates the effect from ππ intermediate states to the partial waves for the process γ * γ * → ππ. All contributions are expressed in terms of on-shell form factors and scattering amplitudes, and as such amenable to an experimental determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (ɡ − 2)μ come from hadronic contributions. In particular, it can be expected that in a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor. This new, model-independent approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (ɡ − 2)μ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we make a further step towards a dispersive description of the hadronic light-by-light (HLbL) tensor, which should ultimately lead to a data-driven evaluation of its contribution to (g − 2) μ . We first provide a Lorentz decomposition of the HLbL tensor performed according to the general recipe by Bardeen, Tung, and Tarrach, generalizing and extending our previous approach, which was constructed in terms of a basis of helicity amplitudes. Such a tensor decomposition has several advantages: the role of gauge invariance and crossing symmetry becomes fully transparent; the scalar coefficient functions are free of kinematic singularities and zeros, and thus fulfill a Mandelstam double-dispersive representation; and the explicit relation for the HLbL contribution to (g − 2) μ in terms of the coefficient functions simplifies substantially. We demonstrate explicitly that the dispersive approach defines both the pion-pole and the pion-loop contribution unambiguously and in a model-independent way. The pion loop, dispersively defined as pion-box topology, is proven to coincide exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g − 2)μ come from hadronic contributions. In particular, it can be expected that in a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. Such a model-independent Approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (g − 2)μ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the formation temperature of minerals using fluid inclusions is a crucial step in understanding rock-forming scenarios. Unfortunately, fluid inclusions in minerals formed at low temperature, such as gypsum, are commonly in a metastable monophase liquid state. To overcome this problem, ultra-short laser pulses can be used to induce vapor bubble nucleation, thus creating a stable two-phase fluid inclusion appropriate for subsequent measurements of the liquid-vapor homogenization temperature, T-h. In this study we evaluate the applicability of T-h data to accurately determine gypsum formation temperatures. We used fluid inclusions in synthetic gypsum crystals grown in the laboratory at different temperatures between 40 degrees C and 80 degrees C under atmospheric pressure conditions. We found an asymmetric distribution of the T-h values, which are systematically lower than the actual crystal growth temperatures, T-g; this is due to (1) the effect of surface tension on liquid-vapor homogenization, and (2) plastic deformation of the inclusion walls due to internal tensile stress occurring in the metastable state of the inclusions. Based on this understanding, we have determined growth temperatures of natural giant gypsum crystals from Naica (Mexico), yielding 47 +/- 1.5 degrees C for crystals grown in the Cave of Swords (120 m below surface) and 54.5 +/- 2 degrees C for giant crystals grown in the Cave of Crystals (290 m below surface). These results support the earlier hypothesis that the population and the size of the Naica crystals were controlled by temperature. In addition, this experimental method opens a door to determining the growth temperature of minerals forming in low-temperature environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brushite and octacalcium phosphate (OCP) crystals are well-known precursors of hydroxylapatite (HAp), the main mineral found in bone. In this report, we present a new method for biomimicking brushite and OCP using single and double diffusion techniques. Brushite and OCP crystals were grown in an iota-carrageenan gel. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed different morphologies of brushite crystals from highly porous aggregates to plate-shaped forms. OCP crystals grown in iota-carrageenan showed a porous spherical shape different from brushite growth forms. The XRD method demonstrated that the single-diffusion method favors the formation of monoclinic brushite. In contrast, the double diffusion method was found to promote the formation of the triclinic octacalcium phosphate OCP phase. By combining the different parameters for crystal growth in carrageenan, such as ion concentration, gel pH and gel density, it is possible to modify the morphology of composite crystals, change the phase of calcium phosphate and modulate the amount of carrageenan inclusion in crystals. This study suggests that iota-carrageenan is a high-molecular-weight polysaccharide that is potentially applicable for controlling calcium phosphate crystallization.