11 resultados para cold exposure

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Mutations in the SCN9A gene cause chronic pain and pain insensitivity syndromes. We aimed to study clinical, genetic, and electrophysiological features of paroxysmal extreme pain disorder (PEPD) caused by a novel SCN9A mutation. METHODS Description of a 4-generation family suffering from PEPD with clinical, genetic and electrophysiological studies including patch clamp experiments assessing response to drug and temperature. RESULTS The family was clinically comparable to those reported previously with the exception of a favorable effect of cold exposure and a lack of drug efficacy including with carbamazepine, a proposed treatment for PEPD. A novel p.L1612P mutation in the Nav1.7 voltage-gated sodium channel was found in the four affected family members tested. Electrophysiologically the mutation substantially depolarized the steady-state inactivation curve (V1/2 from -61.8 ± 4.5 mV to -30.9 ± 2.2 mV, n = 4 and 7, P < 0.001), significantly increased ramp current (from 1.8% to 3.4%, n = 10 and 12) and shortened recovery from inactivation (from 7.2 ± 5.6 ms to 2.2 ± 1.5 ms, n = 11 and 10). However, there was no persistent current. Cold exposure reduced peak current and prolonged recovery from inactivation in wild-type and mutated channels. Amitriptyline only slightly corrected the steady-state inactivation shift of the mutated channel, which is consistent with the lack of clinical benefit. CONCLUSIONS The novel p.L1612P Nav1.7 mutation expands the PEPD spectrum with a unique combination of clinical symptoms and electrophysiological properties. Symptoms are partially responsive to temperature but not to drug therapy. In vitro trials of sodium channel blockers or temperature dependence might help predict treatment efficacy in PEPD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the development of modern transportation facilities, an ever rising number of individuals including many patients with preexisting diseases visit high-altitude locations (>2500 m). High-altitude exposure triggers a series of physiologic responses intended to maintain an adequate tissue oxygenation. Even in normal subjects, there is enormous interindividual variability in these responses that may be further amplified by environmental factors such as cold temperature, low humidity, exercise, and stress. These adaptive mechanisms, although generally tolerated by most healthy subjects, may induce major problems in patients with preexisting cardiovascular diseases in which the functional reserves are already limited. Preexposure assessment of patients helps to minimize risk and detect contraindications to high-altitude exposure. Moreover, the great variability and nonpredictability of the adaptive response should encourage physicians counseling such patients to adapt a cautionary approach. Here, we will briefly review how high-altitude adjustments may interfere with and aggravate/decompensate preexisting cardiovascular diseases. Moreover, we will provide practical recommendations on how to investigate and counsel patients with cardiovascular disease desiring to travel to high-altitude locations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. It was previously shown that the prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis are greatest in winter. The aim of this study was to investigate how M. catarrhalis uses the physiologic exposure to cold air to upregulate pivotal survival systems in the pharynx that may contribute to M. catarrhalis virulence. Results A 26°C cold shock induces the expression of genes involved in transferrin and lactoferrin acquisition, and enhances binding of these proteins on the surface of M. catarrhalis. Exposure of M. catarrhalis to 26°C upregulates the expression of UspA2, a major outer membrane protein involved in serum resistance, leading to improved binding of vitronectin which neutralizes the lethal effect of human complement. In contrast, cold shock decreases the expression of Hemagglutinin, a major adhesin, which mediates B cell response, and reduces immunoglobulin D-binding on the surface of M. catarrhalis. Conclusion Cold shock of M. catarrhalis induces the expression of genes involved in iron acquisition, serum resistance and immune evasion. Thus, cold shock at a physiologically relevant temperature of 26°C induces in M. catarrhalis a complex of adaptive mechanisms that enables the bacterium to target their host cellular receptors or soluble effectors and may contribute to enhanced growth, colonization and virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resting and maximum in situ cardiac performance of Newfoundland Atlantic cod (Gadus morhua) acclimated to 10, 4 and 0°C were measured at their respective acclimation temperatures, and when acutely exposed to temperature changes: i.e. hearts from 10°C fish cooled to 4°C, and hearts from 4°C fish measured at 10 and 0°C. Intrinsic heart rate (f(H)) decreased from 41 beats min(-1) at 10°C to 33 beats min(-1) at 4°C and 25 beats min(-1) at 0°C. However, this degree of thermal dependency was not reflected in maximal cardiac output (Q(max) values were ~44, ~37 and ~34 ml min(-1) kg(-1) at 10, 4 and 0°C, respectively). Further, cardiac scope showed a slight positive compensation between 4 and 0°C (Q(10)=1.7), and full, if not a slight over compensation between 10 and 4°C (Q(10)=0.9). The maximal performance of hearts exposed to an acute decrease in temperature (i.e. from 10 to 4°C and 4 to 0°C) was comparable to that measured for hearts from 4°C- and 0°C-acclimated fish, respectively. In contrast, 4°C-acclimated hearts significantly out-performed 10°C-acclimated hearts when tested at a common temperature of 10°C (in terms of both Q(max) and power output). Only minimal differences in cardiac function were seen between hearts stimulated with basal (5 nmol l(-1)) versus maximal (200 nmol l(-1)) levels of adrenaline, the effects of which were not temperature dependent. These results: (1) show that maximum performance of the isolated cod heart is not compromised by exposure to cold temperatures; and (2) support data from other studies, which show that, in contrast to salmonids, cod cardiac performance/myocardial contractility is not dependent upon humoral adrenergic stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the important role of the Central Andes (15–30° S) for climate reconstruction, knowledge about the Quaternary glaciation is very limited due to the scarcity of organic material for radiocarbon dating. We applied 10Be surface exposure dating (SED) on 22 boulders from moraines in the Cordon de Doña Rosa, Northern/Central Chile (~31° S). The results show that several glacial advances in the southern Central Andes occurred during the Late Glacial between ~14.7±1.5 and 11.6±1.2 ka. A much more extensive glaciation is dated to ~32±3 ka, predating the temperature minimum of the global LGM (Last Glacial Maximum: ~20 ka). Reviewing these results in the paleoclimatic context, we conclude that the Late Glacial advances were most likely caused by an intensification of the tropical circulation and a corresponding increase in summer precipitation. High-latitude temperatures minima, e.g. the Younger Dryas (YD) and the Antarctic Cold Reversal (ACR) may have triggered individual advances, but current systematic exposure age uncertainties limit precise correlations. The absence of LGM moraines indicates that moisture advection was too limited to allow significant glacial advances at ~20 ka. The tropical circulation was less intensive despite the maximum in austral summer insolation. Winter precipitation was apparently also insufficient, although pollen and marine studies indicate a northward shift of the westerlies at that time. The dominant pre-LGM glacial advances in Northern/Central Chile at ~32 ka required lower temperatures and increased precipitation than today. We conclude that the westerlies were more intense and/or shifted equatorward, possibly due to increased snow and ice cover at higher southern latitudes coinciding with a minimum of insolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface exposure dating (SED) is an innovative tool already being widely applied for moraine dating and for Late Quaternary glacier and climate reconstruction. Here we present exposure ages of 28 boulders from the Cordillera Real and the Cordillera Cochabamba, Bolivia. Our results indicate that the local Last Glacial Maximum (LGM) in the Eastern Cordilleras occurred at ~22–25 ka and was thus synchronous to the global temperature minimum. We were also able to date several Late Glacial moraines to ~11–13 ka, which likely document lower temperatures and increased precipitation ("Coipasa" humid phase). Additionally, we recognize the existence of older Late Glacial moraines re-calculated to ~15 ka from published cosmogenic nuclide data. Those may coincide with the cold Heinrich 1 event in the North Atlantic region and the pronounced "Tauca" humid phase. We conclude that (i) exposure ages in the tropical Andes may have been overestimated so far due to methodological uncertainties, and (ii) although precipitation plays an important role for glacier mass balances in the tropical Andes, it becomes the dominant forcing for glaciation only in the drier and thus more precipitation-sensitive regions farther west and south.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid and prolonged downshifts of environmental temperature when humans breathe cold air. In the present study, we show that a 26 degrees C cold shock up-regulates the expression of UspA1, a major adhesin and putative virulence factor of M. catarrhalis, by prolonging messenger RNA half-life. Cold shock promotes M. catarrhalis adherence to upper respiratory tract cells via enhanced binding to fibronectin, an extracellular matrix component that mediates bacterial attachment. Exposure of M. catarrhalis to 26 degrees C increases the outer membrane protein-mediated release of the proinflammatory cytokine interleukin 8 in pharyngeal epithelial cells. Furthermore, cold shock at 26 degrees C enhances the binding of salivary immunoglobulin A on the surface of M. catarrhalis. These data indicate that cold shock at a physiologically relevant temperature of 26 degrees C affects the nasopharyngeal host-pathogen interaction and may contribute to M. catarrhalis virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold acclimation is important for crop survival in environments undergoing seasonal low temperatures. It involves the induction of defensive mechanisms including the accumulation of different cryoprotective molecules among which are dehydrins (DHN). Recently several sequences coding for dehydrins were identified in white clover (Trifolium repens). This work aimed to select the most responsive to cold stress DHN analogues in search for cold stress diagnostic markers. The assessment of dehydrin transcript accumulation via RT-PCR and immunodetection performed with three antibodies against the conserved K-, Y-, and S-segment allowed to outline different dehydrin types presented in the tested samples. Both analyses confirmed that YnKn dehydrins were underrepresented in the controls but exposure to low temperature specifically induced their accumulation. Strong immunosignals corresponding to 37–40 kDa with antibodies against Y- and K-segment were revealed in cold-stressed leaves. Another ‘cold-specific’ band at position 52–55 kDa was documented on membranes probed with antibodies against K-segment. Real time RT-qPCR confirmed that low temperatures induced the accumulation of SKn and YnSKn transcripts in leaves and reduced their expression in roots. Results suggest that a YnKn dehydrin transcript with GenBank ID: KC247805 and the immunosignal at 37–40 kDa, obtained with antibodies against Y- and K-segment are reliable markers for cold stress in white clover. The assessment of SKn (GenBank ID: EU846208) and YnSKn (GenBank ID: KC247804) transcript levels in leaves could serve as additional diagnostic tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moraxella catarrhalis is a common pathogen of the human respiratory tract. Multidrug efflux pumps play a major role in antibiotic resistance and virulence in many Gram-negative organisms. In the present study, the role of the AcrAB-OprM efflux pump in antibiotic resistance was investigated by constructing mutants that lack the acrA, acrB, and oprM genes in M. catarrhalis strain O35E. We observed a moderate (1.5-fold) decrease in the MICs of amoxicillin and cefotaxime and a marked (4.7-fold) decrease in the MICs of clarithromycin for acrA, acrB, and oprM mutants in comparison with the wild-type O35E strain. Exposure of the M. catarrhalis strains O35E and 300 to amoxicillin triggered an increased transcription of all AcrAB-OprM pump genes, and exposure of strains O35E, 300, and 415 to clarithromycin enhanced the expression of acrA and oprM mRNA. Inactivation of the AcrAB-OprM efflux pump genes demonstrated a decreased ability to invade epithelial cells compared to the parental strain, suggesting that acrA, acrB, and oprM are required for efficient invasion of human pharyngeal epithelial cells. Cold shock increases the expression of AcrAB-OprM efflux pump genes in all three M. catarrhalis strains tested. Increased expression of AcrAB-OprM pump genes after cold shock leads to a lower accumulation of Hoechst 33342 (H33342), a substrate of AcrAB-OprM efflux pumps, indicating that cold shock results in increased efflux activity. In conclusion, the AcrAB-OprM efflux pump appears to play a role in the antibiotic resistance and virulence of M. catarrhalis and is involved in the cold shock response.