49 resultados para coiled-coil
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin
Resumo:
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.
Resumo:
Migrating lymphocytes acquire a polarized phenotype with a leading and a trailing edge, or uropod. Although in vitro experiments in cell lines or activated primary cell cultures have established that Rho-p160 coiled-coil kinase (ROCK)-myosin II-mediated uropod contractility is required for integrin de-adhesion on two-dimensional surfaces and nuclear propulsion through narrow pores in three-dimensional matrices, less is known about the role of these two events during the recirculation of primary, nonactivated lymphocytes. Using pharmacological antagonists of ROCK and myosin II, we report that inhibition of uropod contractility blocked integrin-independent mouse T cell migration through narrow, but not large, pores in vitro. T cell crawling on chemokine-coated endothelial cells under shear was severely impaired by ROCK inhibition, whereas transendothelial migration was only reduced through endothelial cells with high, but not low, barrier properties. Using three-dimensional thick-tissue imaging and dynamic two-photon microscopy of T cell motility in lymphoid tissue, we demonstrated a significant role for uropod contractility in intraluminal crawling and transendothelial migration through lymph node, but not bone marrow, endothelial cells. Finally, we demonstrated that ICAM-1, but not anatomical constraints or integrin-independent interactions, reduced parenchymal motility of inhibitor-treated T cells within the dense lymphoid microenvironment, thus assigning context-dependent roles for uropod contraction during lymphocyte recirculation.
Resumo:
We have recently shown that the majority of allergens can be represented by allergen motifs. This observation prompted us to experimentally investigate the synthesized peptides corresponding to the in silico motifs with regard to potential IgE binding and cross-reactions with allergens. Two motifs were selected as examples to conduct in vitro studies. From the first motif, derived from allergenic MnSOD sequences, the motif stretch of the allergen Asp f 6 was selected and synthesized as a peptide (MnSOD Mot). The corresponding full-length MnSOD was also expressed in Escherichia coli and both were compared for IgE reactivity with sera of patients reacting to the MnSOD of Aspergillus fumigatus or Malassezia sympodialis. For the second motif, the invertebrate tropomyosin sequences were aligned and a motif consensus sequence was expressed as a recombinant protein (Trop Mot). The IgE reactivity of Trop Mot was analyzed in ELISA and compared to that of recombinant tropomyosin from the shrimp Penaeus aztecus (rPen a 1) in ImmunoCAP. MnSOD Mot was weakly recognized by some of the tested sera, suggesting that the IgE binding epitopes of a multimeric globular protein such as MnSOD cannot be fully represented by a motif peptide. In contrast, the motif Trop Mot showed the same IgE reactivity as shrimp full-length tropomyosin, indicating that the major allergenic reactivity of a repetitive structure such as tropomyosin can be covered by a motif peptide. Our results suggest that the motif-generating algorithm may be used for identifying major IgE binding structures of coiled-coil proteins.
Resumo:
The B-box motif is the defining feature of the TRIM family of proteins, characterized by a RING finger-B-box-coiled coil tripartite fold. We have elucidated the crystal structure of B-box 2 (B2) from MuRF1, a TRIM protein that supports a wide variety of protein interactions in the sarcomere and regulates the trophic state of striated muscle tissue. MuRF1 B2 coordinates two zinc ions through a cross-brace alpha/beta-topology typical of members of the RING finger superfamily. However, it self-associates into dimers with high affinity. The dimerization pattern is mediated by the helical component of this fold and is unique among RING-like folds. This B2 reveals a long shallow groove that encircles the C-terminal metal binding site ZnII and appears as the defining protein-protein interaction feature of this domain. A cluster of conserved hydrophobic residues in this groove and, in particular, a highly conserved aromatic residue (Y133 in MuRF1 B2) is likely to be central to this role. We expect these findings to aid the future exploration of the cellular function and therapeutic potential of MuRF1.
Resumo:
Paramyxovirus cell entry is controlled by the concerted action of two viral envelope glycoproteins, the fusion (F) and the receptor-binding (H) proteins, which together with a cell surface receptor mediate plasma membrane fusion activity. The paramyxovirus F protein belongs to class I viral fusion proteins which typically contain two heptad repeat regions (HR). Particular to paramyxovirus F proteins is a long intervening sequence (IS) located between both HR domains. To investigate the role of the IS domain in regulating fusogenicity, we mutated in the canine distemper virus (CDV) F protein IS domain a highly conserved leucine residue (L372) previously reported to cause a hyperfusogenic phenotype. Beside one F mutant, which elicited significant defects in processing, transport competence, and fusogenicity, all remaining mutants were characterized by enhanced fusion activity despite normal or slightly impaired processing and cell surface targeting. Using anti-CDV-F monoclonal antibodies, modified conformational F states were detected in F mutants compared to the parental protein. Despite these structural differences, coimmunoprecipitation assays did not reveal any drastic modulation in F/H avidity of interaction. However, we found that F mutants had significantly enhanced fusogenicity at low temperature only, suggesting that they folded into conformations requiring less energy to activate fusion. Together, these data provide strong biochemical and functional evidence that the conserved leucine 372 at the base of the HRA coiled-coil of F(wt) controls the stabilization of the prefusogenic state, restraining the conformational switch and thereby preventing extensive cell-cell fusion activity.
Resumo:
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite's nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization.
Resumo:
BACKGROUND Tubules and sheets of endoplasmic reticulum perform different functions and undergo inter-conversion during different stages of the cell cycle. Tubules are stabilized by curvature inducing resident proteins, but little is known about the mechanisms of endoplasmic reticulum sheet stabilization. Tethering of endoplasmic reticulum membranes to the cytoskeleton or to each other has been proposed as a plausible way of sheet stabilization. RESULTS Here, using fluorescence microscopy we show that the previously proposed mechanisms, such as membrane tethering via GFP-dimerization or coiled coil protein aggregation do not explain the formation of the calnexin-induced organized smooth endoplasmic reticulum membrane stacks. We also show that the LINC complex proteins known to serve a tethering function in the nuclear envelope are excluded from endoplasmic reticulum stacks. Finally, using cryo-electron microscopy of vitreous sections methodology that preserves cellular architecture in a hydrated, native-like state, we show that the sheet stacks are highly regular and may contain ordered arrays of macromolecular complexes. Some of these complexes decorate the cytosolic surface of the membranes, whereas others appear to span the width of the cytosolic or luminal space between the stacked sheets. CONCLUSION Our results provide evidence in favour of the hypothesis of endoplasmic reticulum sheet stabilization by intermembrane tethering.
Resumo:
There are conflicting results with regard to the use of catheter-based techniques for continuous paravertebral block. Local anaesthetic spread within the paravertebral space is limited and the clinical effect is often variable. Discrepancies between needle tip position and final catheter position can also be problematic. The aim of this proof-of-concept study was to assess the reliability of placing a newly developed coiled catheter in human cadavers. Sixty Tuohy needles and coiled catheters were placed under ultrasound guidance, three on each side of the thoracic vertebral column in 10 human cadavers. Computed tomography was used to assess needle tip and catheter tip locations. No catheter was misplaced into the epidural, pleural or prevertebral spaces. The mean (SD) distance between catheter tips and needle tips was 8.2 (4.9) mm. The median (IQR [range]) caudo-cephalad spread of contrast dye injectate through a subset of 20 catheters was 4 (4-5[3-8]) thoracic segments. All catheters were removed without incident. Precise paravertebral catheter placement can be achieved using ultrasound-guided placement of a coiled catheter.
Resumo:
A 20-channel phased-array coil for MRI of mice has been designed, constructed, and validated with bench measurements and high-resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3- and 1.3-fold, respectively. Comparison with a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of twofold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images.
Resumo:
BACKGROUND AND PURPOSE:Conventional platinum coils cause imaging artifacts that reduce imaging quality and therefore impair imaging interpretation on intraprocedural or noninvasive follow-up imaging. The purpose of this study was to evaluate imaging characteristics and artifact production of polymeric coils compared with standard platinum coils in vitro and in vivo.MATERIALS AND METHODS:Polymeric coils and standard platinum coils were evaluated in vitro with the use of 2 identical silicon aneurysm models coiled with a packing attenuation of 20% each. DSA, flat panel CT, CT, and MR imaging were performed. In vivo evaluation of imaging characteristics of polymeric coils was performed in experimentally created rabbit carotid bifurcation aneurysms. DSA, CT/CTA, and MR imaging were performed after endovascular treatment of the aneurysms. Images were evaluated regarding visibility of individual coils, coil mass, artifact production, and visibility of residual flow within the aneurysm.RESULTS:Overall, in vitro and in vivo imaging showed relevantly reduced artifact production of polymeric coils in all imaging modalities compared with standard platinum coils. Image quality of CT and MR imaging was improved with the use of polymeric coils, which permitted enhanced depiction of individual coil loops and residual aneurysm lumen as well as the peri-aneurysmal area. Remarkably, CT images demonstrated considerably improved image quality with only minor artifacts compared with standard coils. On DSA, polymeric coils showed transparency and allowed visualization of superimposed vessel structures.CONCLUSIONS:This initial experimental study showed improved imaging quality with the use of polymeric coils compared with standard platinum coils in all imaging modalities. This might be advantageous for improved intraprocedural imaging for the detection of complications and posttreatment noninvasive follow-up imaging.
Resumo:
We describe the successful selective coil embolization of an infected superior gluteal pseudoaneurysm secondary to methicillin-resistant Staphylococcus aureus (MRSA) in a 36-year old women. The patient presented with a long history of drug abuse and perisacral abscesses due to chronic sacroilitis. The chosen strategy provides a safe and successful management of infected false gluteal artery aneurysm.
Resumo:
INTRODUCTION: The use of vascular plug devices for the occlusion of high-flow lesions is a relatively new and successful procedure in peripheral and cardiopulmonary interventions. We report on the use and efficiency of the Amplatzer vascular plug in a small clinical series and discuss its potential for occlusion of large vessels and high-flow lesions in neurointerventions. METHODS: Between 2005 and 2007 four patients (mean age 38.5 years, range 16-62 years) were treated with the device, in three patients to achieve parent artery occlusion of the internal carotid artery, in one patient to occlude a high-flow arteriovenous fistula of the neck. The application, time to occlusion, and angiographic and clinical results and the follow-up were evaluated. RESULTS: Navigation, positioning and detachment of the device were satisfactory in all cases. No flow-related migration of the plug was seen. The cessation of flow was delayed by a mean of 10.5 min after deployment of the first device. In the procedures involving vessel sacrifice, two devices had to be deployed to achieve total occlusion. No patient experienced new neurological deficits; the 3-month follow-up revealed stable results. CONCLUSION: The Amplatzer vascular plug can be adapted for the treatment of high-flow lesions and parent artery occlusions in the head and neck. In this small series the use of the devices was uncomplicated and safe. The rigid and large delivery device and the delayed cessation of flow currently limit the device's use in neurointerventions.