4 resultados para co-doped ZnO

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sr2+ co-doped LaBr3:5%Ce scintillators show a record low energy resolution of 2% at 662 keV and a considerably better proportional response compared to standard LaBr3:5%Ce. This paper reports on the optical properties and time response of Sr co-doped LaBr3:5%Ce. Multiple excitation and emission bands were observed in X-ray and optically excited luminescence measurements. Those bands are ascribed to three different Ce3+ sites. The first is the unperturbed site with the same luminescence properties as those of standard LaBr3:Ce. The other two are perturbed sites with red-shifted 4f-5d1 Ce3+ excitation and emission bands, longer Ce3+ decay times, and smaller Stokes shifts. The lowering of the lowest 5d level of Ce3+ was ascribed to larger crystal field interactions at the perturbed sites. Two types of point defects in the LaBr3 matrix were proposed to explain the observed results. No Ce4+ ions were detected in Sr co-doped LaBr3:5%Ce by diffuse reflectance measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports on the effects of Li+, Na+, Mg2+, Ca2+, Sr2+, and Ba2+ co-doping on the scintillation properties of LaBr3:5%Ce3+. Pulse-height spectra of various gamma and X-ray sources with energies from 8 keV to 1.33 MeV were measured from which the values of light yield and energy resolution were derived. Sr2+ and Ca2+ co-doped crystals showed excellent energy resolution as compared to standard LaBr3:Ce. The proportionality of the scintillation response to gamma and X-rays of Ca2+, Sr2+, and Ba2+ co-doped samples also considerably improves. The effects of the co-dopants on emission spectra, decay time, and temperature stability of the light yield were studied. Multiple thermoluminescence glow peaks, decrease of the light yield at temperatures below 295 K, and additional long scintillation decay components were observed and related to charge carrier traps appearing in LaBr3:Ce3+ with Ca2+, Sr2+, and Ba2+ co-doping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the synthesis and characterization of colored ZnO-based powders via solution combustion reaction of urea and zinc nitrate hexahydrate in varying molar ratios between 1:1 and 10:1. Among other techniques, we employ X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy to characterize the products. Within a narrow range of reactant ratios, we reproducibly find an unidentified, crystalline precursor phase related to isocyanuric acid next to ZnO. Finally, we complement our investigations by performing Prompt Gamma Activation Analysis (PGAA) on selected products in order to directly determine elemental bulk compositions and compare these with X-ray photoelectron spectroscopy (XPS) measurements. Our data show traces of nitrogen mainly on the surface of the particles, and thus we question the solution combustion method as a reliable synthesis toward N-doped ZnO. Furthermore, we exclude nitrogen as being responsible for the appearance of the four controversially discussed Raman bands superimposed onto the spectrum of pure ZnO (at 275, 510, 582, and 643 cm–1) and show that the combination of PGAA and XPS is an excellent and complementary method to obtain information about the distribution of the elements in question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as "backspatter" and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the "triple contrast" method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that "triple contrast" stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for "low template" DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the "triple contrast" method's usefulness as a research tool in experimental forensic ballistics.