36 resultados para cloud computing, hypervisor, virtualizzazione, live migration, infrastructure as a service
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
Resumo:
The evolution of the Next Generation Networks, especially the wireless broadband access technologies such as Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX), have increased the number of "all-IP" networks across the world. The enhanced capabilities of these access networks has spearheaded the cloud computing paradigm, where the end-users aim at having the services accessible anytime and anywhere. The services availability is also related with the end-user device, where one of the major constraints is the battery lifetime. Therefore, it is necessary to assess and minimize the energy consumed by the end-user devices, given its significance for the user perceived quality of the cloud computing services. In this paper, an empirical methodology to measure network interfaces energy consumption is proposed. By employing this methodology, an experimental evaluation of energy consumption in three different cloud computing access scenarios (including WiMAX) were performed. The empirical results obtained show the impact of accurate network interface states management and application network level design in the energy consumption. Additionally, the achieved outcomes can be used in further software-based models to optimized energy consumption, and increase the Quality of Experience (QoE) perceived by the end-users.
Resumo:
Recent advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing environmental conditions and number of users, application performance might suffer, leading to Service Level Agreement (SLA) violations and inefficient use of hardware resources. We introduce a system for controlling the complexity of scaling applications composed of multiple services using mechanisms based on fulfillment of SLAs. We present how service monitoring information can be used in conjunction with service level objectives, predictions, and correlations between performance indicators for optimizing the allocation of services belonging to distributed applications. We validate our models using experiments and simulations involving a distributed enterprise information system. We show how discovering correlations between application performance indicators can be used as a basis for creating refined service level objectives, which can then be used for scaling the application and improving the overall application's performance under similar conditions.
Resumo:
Abstract Cloud computing service emerged as an essential component of the Enterprise {IT} infrastructure. Migration towards a full range and large-scale convergence of Cloud and network services has become the current trend for addressing requirements of the Cloud environment. Our approach takes the infrastructure as a service paradigm to build converged virtual infrastructures, which allow offering tailored performance and enable multi-tenancy over a common physical infrastructure. Thanks to virtualization, new exploitation activities of the physical infrastructures may arise for both transport network and Data Centres services. This approach makes network and Data Centres’ resources dedicated to Cloud Computing to converge on the same flexible and scalable level. The work presented here is based on the automation of the virtual infrastructure provisioning service. On top of the virtual infrastructures, a coordinated operation and control of the different resources is performed with the objective of automatically tailoring connectivity services to the Cloud service dynamics. Furthermore, in order to support elasticity of the Cloud services through the optical network, dynamic re-planning features have been provided to the virtual infrastructure service, which allows scaling up or down existing virtual infrastructures to optimize resource utilisation and dynamically adapt to users’ demands. Thus, the dynamic re-planning of the service becomes key component for the coordination of Cloud and optical network resource in an optimal way in terms of resource utilisation. The presented work is complemented with a use case of the virtual infrastructure service being adopted in a distributed Enterprise Information System, that scales up and down as a function of the application requests.
Resumo:
The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission. MCN project was launched in November 2012 for the period of 36 month. In total top-tier 19 partners from industry and academia commit to jointly establish the vision of Mobile Cloud Networking, to develop a fully cloud-based mobile communication and application platform.
Resumo:
Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.
Resumo:
The Mobile Cloud Networking project develops among others, several virtualized services and applications, in particular: (1) IP Multimedia Subsystem as a Service that gives the possibility to deploy a virtualized and on-demand instance of the IP Multimedia Subsystem platform, (2) Digital Signage Service as a Service that is based on a re-designed Digital Signage Service architecture, adopting the cloud computing principles, and (3) Information Centric Networking/Content Delivery Network as a Service that is used for distributing, caching and migrating content from other services. Possible designs for these virtualized services and applications have been identified and are being implemented. In particular, the architectures of the mentioned services were specified, adopting cloud computing principles, such as infrastructure sharing, elasticity, on-demand and pay-as-you-go. The benefits of Reactive Programming paradigm are presented in the context of Interactive Cloudified Digital Signage services in a Mobile Cloud Platform, as well as the benefit of interworking between different Mobile Cloud Networking Services as Digital Signage Service and Content Delivery Network Service for better performance of Video on Demand content deliver. Finally, the management of Service Level Agreements and the support of rating, charging and billing has also been considered and defined.
Resumo:
Current advanced cloud infrastructure management solutions allow scheduling actions for dynamically changing the number of running virtual machines (VMs). This approach, however, does not guarantee that the scheduled number of VMs will properly handle the actual user generated workload, especially if the user utilization patterns will change. We propose using a dynamically generated scaling model for the VMs containing the services of the distributed applications, which is able to react to the variations in the number of application users. We answer the following question: How to dynamically decide how many services of each type are needed in order to handle a larger workload within the same time constraints? We describe a mechanism for dynamically composing the SLAs for controlling the scaling of distributed services by combining data analysis mechanisms with application benchmarking using multiple VM configurations. Based on processing of multiple application benchmarks generated data sets we discover a set of service monitoring metrics able to predict critical Service Level Agreement (SLA) parameters. By combining this set of predictor metrics with a heuristic for selecting the appropriate scaling-out paths for the services of distributed applications, we show how SLA scaling rules can be inferred and then used for controlling the runtime scale-in and scale-out of distributed services. We validate our architecture and models by performing scaling experiments with a distributed application representative for the enterprise class of information systems. We show how dynamically generated SLAs can be successfully used for controlling the management of distributed services scaling.
Resumo:
Modern cloud-based applications and infrastructures may include resources and services (components) from multiple cloud providers, are heterogeneous by nature and require adjustment, composition and integration. The specific application requirements can be met with difficulty by the current static predefined cloud integration architectures and models. In this paper, we propose the Intercloud Operations and Management Framework (ICOMF) as part of the more general Intercloud Architecture Framework (ICAF) that provides a basis for building and operating a dynamically manageable multi-provider cloud ecosystem. The proposed ICOMF enables dynamic resource composition and decomposition, with a main focus on translating business models and objectives to cloud services ensembles. Our model is user-centric and focuses on the specific application execution requirements, by leveraging incubating virtualization techniques. From a cloud provider perspective, the ecosystem provides more insight into how to best customize the offerings of virtualized resources.
Resumo:
Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.
Resumo:
Virtualisation of cellular networks can be seen as a way to significantly reduce the complexity of processes, required nowadays to provide reliable cellular networks. The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission that is focusing on cloud computing concepts to achieve virtualisation of cellular networks. It aims at the development of a fully cloud-based mobile communication and application platform, or more specifically, it aims to investigate, implement and evaluate the technological foundations for the mobile communication system of Long Term Evolution (LTE), based on Mobile Network plus Decentralized Computing plus Smart Storage offered as one atomic service: On-Demand, Elastic and Pay-As-You-Go. This paper provides a brief overview of the MCN project and discusses the challenges that need to be solved.