6 resultados para clinical immunity
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Clinical immunity to Plasmodium falciparum malaria develops after repeated exposure to the parasite. At least 2 P. falciparum variant antigens encoded by multicopy gene families (var and rif) are targets of this adaptive antibody-mediated immunity. A third multigene family of variant antigens comprises the stevor genes. Here, 4 different stevor sequences were selected for cloning and expression in Escherichia coli and His6-tagged fusion proteins were used for assessing the development of immunity. In a cross-sectional analysis of clinically immune adults living in a malaria endemic area in Ghana, high levels of anti-STEVOR IgG antibody titres were determined in ELISA. A cross-sectional study of 90 nine-month-old Ghanaian infants using 1 recombinant STEVOR showed that the antibody responses correlated positively with the number of parasitaemia episodes. In a longitudinal investigation of 17 immunologically naïve 9-month-old infants, 3 different patterns of anti-STEVOR antibody responses could be distinguished (high, transient and low). Children with high anti-STEVOR-antibody levels exhibited an elevated risk for developing parasitaemia episodes. Overall, a protective effect could not be attributed to antibodies against the STEVOR proteins chosen for the study presented here.
Resumo:
Innate immunity represents the first line of defence against pathogens and plays key roles in the activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules that recognize pathogen-associated molecular patterns and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. Pentraxins are essential constituents of the humoral arm of innate immunity and represent a superfamily of highly conserved acute phase proteins, traditionally classified into short and long pentraxins. Pentraxin 3 (PTX3) is the prototypic member of the long pentraxins subfamily. As opposed to C-reactive protein, whose sequence and regulation have not been conserved during evolution from mouse to man, the evolutionary conservation of sequence, gene organization and regulation of PTX3 has allowed addressing its pathophysiological roles in genetically modified mice, in diverse conditions, ranging from infections to sterile inflammation, angiogenesis and female fertility. Despite this conservation, a number of predominantly non-coding polymorphisms have been identified in the PTX3 gene which, when associated in particular haplotypes, have been shown to be relevant in clinical conditions including infection and fertility. Here we review the studies on PTX3, with emphasis on pathogen recognition, tissue remodelling and crosstalk with other components of the innate immune system.
Resumo:
Vaccination in HIV-infected children is often less effective than in healthy children. The goal of this study was to assess vaccine responses to hepatitis A virus (HAV) in HIV-infected children. Children of the Swiss Mother and Child HIV Cohort Study (MoCHiV) were enrolled prospectively. Recommendations for initial, catch-up, and additional HAV immunizations were based upon baseline antibody concentrations and vaccine history. HAV IgG was assessed by enzyme-linked immunosorbent assay (ELISA) with a protective cutoff value defined as ≥10 mIU/ml. Eighty-seven patients were included (median age, 11 years; range, 3.4 to 21.2 years). Forty-two patients were seropositive (48.3%) for HAV. Among 45 (51.7%) seronegative patients, 36 had not received any HAV vaccine dose and were considered naïve. Vaccine responses were assessed after the first dose in 29/35 naïve patients and after the second dose in 33/39 children (25 initially naïve patients, 4 seronegative patients, and 4 seropositive patients that had already received 1 dose of vaccine). Seroconversion was 86% after 1 dose and 97% after 2 doses, with a geometric mean concentration of 962 mIU/ml after the second dose. A baseline CD4(+) T cell count below 750 cells/μl significantly reduced the post-2nd-dose response (P = 0.005). Despite a high rate of seroconversion, patients with CD4(+) T cell counts of <750/μl had lower anti-HAV antibody concentrations. This may translate into a shorter protection time. Hence, monitoring humoral immunity may be necessary to provide supplementary doses as needed.
Resumo:
Humoral immunity in response to an octavalent O-polysaccharide-toxin A conjugate Pseudomonas aeruginosa vaccine is well studied, and a phase III clinical study in cystic fibrosis (CF) patients is currently ongoing. In contrast, little is known about cellular immunity induced by this vaccine. Fifteen healthy volunteers were immunized on days 1 and 60. Parameters of cellular immunity were studied before vaccination on day 1, and on day 74. Analyses included flow cytometry of whole blood and antigen-induced proliferation of and cytokine production by lymphocyte cultures. The effects of immunization on the composition of peripheral blood lymphocytes as determined by flow cytometry were minor. In contrast, after immunization a highly significant increase of proliferation in response to stimulation with detoxified toxin A was noted: the stimulation index rose from 1.4 on day 1 to 42.2 on day 74 (restimulation with 0.4 microg/ml; P = 0.003). Immunization led to significant production of interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha by antigen-stimulated lymphocytes. In contrast, no significant induction of interleukin (IL)-4 or IL-10 was observed. In conclusion, immunization of healthy volunteers led to activation of cellular immunity including strong antigen-specific proliferation and cytokine production. In CF patients priming of the cellular immune system towards a Th1-like pattern would be of potential advantage. Therefore, confirmatory analyses in immunized CF patients with and without chronic infection with P. aeruginosa are foreseen.
Resumo:
Colostrum (COL) contains cytokines and growth factors that may enhance intestinal development in neonates. The hypothesis of this study was that besides providing immunoglobulins, COL is important for intestinal function and meconium release in foals. Newborn foals were either fed COL (n = 5) or an equal amount of milk replacer (MR, n = 7) during the first 24 hours of life. To ensure passive immunity, all foals received 1 L plasma. Postnatal development, meconium release, intestinal motility, white blood cell count, insulin-like growth factor 1, and intestinal absorptive function (xylose absorption test) were evaluated. Clinical findings and meconium release were not affected by feeding of COL or MR. Ultrasonography revealed a slightly larger jejunum and stomach in group COL versus MR (P < 0.05). The percentage of polymorphonuclear leucocytes was higher in foals of group MR versus group COL (P < 0.05) and the percentage of lymphocytes was lower in MR compared with COL foals (P < 0.05). Plasma insulin-like growth factor 1 concentration increased during the first 14 days after birth in both groups. A xylose absorption test on Day 5 revealed similar increases in plasma xylose concentrations after oral intake. In conclusion, feeding of COL versus MR was without effect on meconium release and intestinal absorptive function. Differences between foals fed COL and MR with regard to intestinal function are apparently without clinical relevance. In foals that have not received maternal COL, there is no major risk of intestinal problems if they are fed MR and provided with immunoglobulins by transfusion of plasma.
Resumo:
BACKGROUND: This study was aimed at evaluating the clinical protection, the level of Porcine circovirus type 2 (PCV2) viremia and the immune response (antibodies and IFN-γ secreting cells (SC)) in piglets derived from PCV2 vaccinated sows and themselves vaccinated against PCV2 at different age, namely at 4, 6 and 8 weeks. The cohort study has been carried out over three subsequent production cycles (replicates). At the start/enrolment, 46 gilts were considered at first mating, bled and vaccinated. At the first, second and third farrowing, dams were bled and re-vaccinated at the subsequent mating after weaning piglets. Overall 400 piglets at each farrowing (first, second and third) were randomly allocated in three different groups (100 piglets/group) based on the timing of vaccination (4, 6 or 8 weeks of age). A fourth group was kept non-vaccinated (controls). Piglets were vaccinated intramuscularly with one dose (2 mL) of a commercial PCV2a-based subunit vaccine (Porcilis® PCV). Twenty animals per group were bled at weaning and from vaccination to slaughter every 4 weeks for the detection of PCV2 viremia, humoral and cell-mediated immune responses. Clinical signs and individual treatments (morbidity), mortality, and body weight of all piglets were recorded. RESULTS: All vaccination schemes (4, 6 and 8 weeks of age) were able to induce an antibody response and IFN-γ SC. The highest clinical and virological protection sustained by immune reactivity was observed in pigs vaccinated at 6 weeks of age. Overall, repeated PCV2 vaccination in sows at mating and the subsequent higher levels of maternally derived antibodies did not significantly interfere with the induction of both humoral and cell-mediated immunity in their piglets after vaccination. CONCLUSIONS: The combination of vaccination in sows at mating and in piglets at 6 weeks of age was more effective for controlling PCV2 natural infection, than other vaccination schemas, thus sustaining that some interference of MDA with the induction of an efficient immune response could be considered. In conclusion, optimal vaccination strategy needs to balance the levels of passive immunity, the management practices and timing of infection.