37 resultados para climate forcing

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of climate over the Last Millennium (850–1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We update the forcings for the PMIP3 experiments for the Last Millennium to include new assessments of historical land use changes and discuss new suggestions for calibrating solar activity proxies to total solar irradiance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adding to the on-going debate regarding vegetation recolonisation (more particularly the timing) in Europe and climate change since the Lateglacial, this study investigates a long sediment core (LL081) from Lake Ledro (652ma.s.l., southern Alps, Italy). Environmental changes were reconstructed using multiproxy analysis (pollen-based vegetation and climate reconstruction, lake levels, magnetic susceptibility and X-ray fluorescence (XRF) measurements) recorded climate and land-use changes during the Lateglacial and early-middle Holocene. The well-dated and high-resolution pollen record of Lake Ledro is compared with vegetation records from the southern and northern Alps to trace the history of tree species distribution. An altitudedependent progressive time delay of the first continuous occurrence of Abies (fir) and of the Larix (larch) development has been observed since the Lateglacial in the southern Alps. This pattern suggests that the mid-altitude Lake Ledro area was not a refuge and that trees originated from lowlands or hilly areas (e.g. Euganean Hills) in northern Italy. Preboreal oscillations (ca. 11 000 cal BP), Boreal oscillations (ca. 10 200, 9300 cal BP) and the 8.2 kyr cold event suggest a centennial-scale climate forcing in the studied area. Picea (spruce) expansion occurred preferentially around 10 200 and 8200 cal BP in the south-eastern Alps, and therefore reflects the long-lasting cumulative effects of successive boreal and the 8.2 kyr cold event. The extension of Abies is contemporaneous with the 8.2 kyr event, but its development in the southern Alps benefits from the wettest interval 8200-7300 cal BP evidenced in high lake levels, flood activity and pollen-based climate reconstructions. Since ca. 7500 cal BP, a weak signal of pollen-based anthropogenic activities suggest weak human impact. The period between ca. 5700 and ca. 4100 cal BP is considered as a transition period to colder and wetter conditions (particularly during summers) that favoured a dense beech (Fagus) forest development which in return caused a distinctive yew (Taxus) decline.We conclude that climate was the dominant factor controlling vegetation changes and erosion processes during the early and middle Holocene (up to ca. 4100 cal BP).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Indo-Pacific warm pool houses the largest zone of deep atmospheric convection on Earth and plays a critical role in global climate variations. Despite the region’s importance, changes in Indo-Pacific hydroclimate on orbital timescales remain poorly constrained. Here we present high-resolution geochemical records of surface runoff and vegetation from sediment cores fromLake Towuti, on the island of Sulawesi in central Indonesia, that continuously span the past 60,000 y.We show that wet conditions and rainforest ecosystems on Sulawesi present during marine isotope stage 3 (MIS3) and the Holocene were interrupted by severe drying between ∼33,000 and 16,000 y B.P. when Northern Hemisphere ice sheets expanded and global temperatures cooled. Our record reveals little direct influence of precessional orbital forcing on regional climate, and the similarity between MIS3 and Holocene climates observed in Lake Towuti suggests that exposure of the Sunda Shelf has a weaker influence on regional hydroclimate and terrestrial ecosystems than suggested previously. We infer that hydrological variability in this part of Indonesia varies strongly in response to high-latitude climate forcing, likely through reorganizations of the monsoons and the position of the intertropical convergence zone. These findings suggest an important role for the tropical western Pacific in amplifying glacial–interglacial climate variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using simulated climate data from the comprehensive coupled climate model IPSL CM4, we simulate the Greenland ice sheet (GrIS) during the Eemian interglaciation with the three-dimensional ice sheet model SICOPOLIS. The Eemian is a period 126 000 yr before present (126 ka) with Arctic temperatures comparable to projections for the end of this century. In our simulation, the northeastern part of the GrIS is unstable and retreats significantly, despite moderate melt rates. This result is found to be robust to perturbations within a wide parameter space of key parameters of the ice sheet model, the choice of initial ice temperature, and has been reproduced with climate forcing from a second coupled climate model, the CCSM3. It is shown that the northeast GrIS is the most vulnerable. Even a small increase in melt removes many years of ice accumulation, giving a large mass imbalance and triggering the strong ice-elevation feedback. Unlike the south and west, melting in the northeast is not compensated by high accumulation. The analogy with modern warming suggests that in coming decades, positive feedbacks could increase the rate of mass loss of the northeastern GrIS, exceeding the recent observed thinning rates in the south.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adding to the on-going debate regarding vegetation recolonisation (more particularly the timing) in Europe and climate change since the Lateglacial, this study investigates a long sediment core (LL081) from Lake Ledro (652ma.s.l., southern Alps, Italy). Environmental changes were reconstructed using multiproxy analysis (pollen-based vegetation and climate reconstruction, lake levels, magnetic susceptibility and X-ray fluorescence (XRF) measurements) recorded climate and land-use changes during the Lateglacial and early-middle Holocene. The well-dated and high-resolution pollen record of Lake Ledro is compared with vegetation records from the southern and northern Alps to trace the history of tree species distribution. An altitudedependent progressive time delay of the first continuous occurrence of Abies (fir) and of the Larix (larch) development has been observed since the Lateglacial in the southern Alps. This pattern suggests that the mid-altitude Lake Ledro area was not a refuge and that trees originated from lowlands or hilly areas (e.g. Euganean Hills) in northern Italy. Preboreal oscillations (ca. 11 000 cal BP), Boreal oscillations (ca. 10 200, 9300 cal BP) and the 8.2 kyr cold event suggest a centennial-scale climate forcing in the studied area. Picea (spruce) expansion occurred preferentially around 10 200 and 8200 cal BP in the south-eastern Alps, and therefore reflects the long-lasting cumulative effects of successive boreal and the 8.2 kyr cold event. The extension of Abies is contemporaneous with the 8.2 kyr event, but its development in the southern Alps benefits from the wettest interval 8200-7300 cal BP evidenced in high lake levels, flood activity and pollen-based climate reconstructions. Since ca. 7500 cal BP, a weak signal of pollen-based anthropogenic activities suggest weak human impact. The period between ca. 5700 and ca. 4100 cal BP is considered as a transition period to colder and wetter conditions (particularly during summers) that favoured a dense beech (Fagus) forest development which in return caused a distinctive yew (Taxus) decline.We conclude that climate was the dominant factor controlling vegetation changes and erosion processes during the early and middle Holocene (up to ca. 4100 cal BP).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Earth’s climate system is driven by a complex interplay of internal chaotic dynamics and natural and anthropogenic external forcing. Recent instrumental data have shown a remarkable degree of asynchronicity between Northern Hemisphere and Southern Hemisphere temperature fluctuations, thereby questioning the relative importance of internal versus external drivers of past as well as future climate variability1, 2, 3. However, large-scale temperature reconstructions for the past millennium have focused on the Northern Hemisphere4, 5, limiting empirical assessments of inter-hemispheric variability on multi-decadal to centennial timescales. Here, we introduce a new millennial ensemble reconstruction of annually resolved temperature variations for the Southern Hemisphere based on an unprecedented network of terrestrial and oceanic palaeoclimate proxy records. In conjunction with an independent Northern Hemisphere temperature reconstruction ensemble5, this record reveals an extended cold period (1594–1677) in both hemispheres but no globally coherent warm phase during the pre-industrial (1000–1850) era. The current (post-1974) warm phase is the only period of the past millennium where both hemispheres are likely to have experienced contemporaneous warm extremes. Our analysis of inter-hemispheric temperature variability in an ensemble of climate model simulations for the past millennium suggests that models tend to overemphasize Northern Hemisphere–Southern Hemisphere synchronicity by underestimating the role of internal ocean–atmosphere dynamics, particularly in the ocean-dominated Southern Hemisphere. Our results imply that climate system predictability on decadal to century timescales may be lower than expected based on assessments of external climate forcing and Northern Hemisphere temperature variations5, 6 alone.