68 resultados para clay-sized fractions

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Opalinus Clay formation in North Switzerland is a potential host rock for a deep underground radioactive waste repository. The distribution of U-238, U-234 and Th-230 was studied in rock samples of the Opalinus Clay from an exploratory borehole at Benken (Canton of Zurich) using MC-ICP-MS. The aim of U-234 was to assess the in situ, long-term migration behaviour in this rock. Very low hydraulic conductivities of the Opalinus Clay, reducing potential of the pore water and its chemical equilibrium with the host rock are expected to render both U-238 and Th-230 immobile. If U is heterogeneously distributed in the Opalinus Clay, gradients in the supply of U-234 from the rock matrix to the pore water by the decay of U-238 will be established. Diffusive redistribution separates U-234 from its immobile parent U-238 resulting in bulk rock U-234/U-238 activity disequilibria. These may provide a means of estimating the mobility of U-234 in the rock if the diffusion rate of U-234 is significant compared to its decay rate. Sampling was carried out on two scales. Drilling of cm-spaced samples from the drill-core was done to study mobility over short distances and elucidate possible small-scale lithological control. Homogenized 25-cm-long portions of a 2-m-long drill-core section were prepared to provide information on transport over a longer distance. Variations in U and/or Th content on the cm-scale between clays and carbonate-sandy layers are revealed by beta-scanning, which shows that the (dominant) clay is richer in both elements. Samples were digested using aqua regia followed by total HF dissolution, yielding two fractions. in all studied samples U was found to be concentrated in the HF digestion fraction. It has a high U/Th ratio and a study by SEM-EDS points to sub-mu m up to several mu m in size zircon grains as the main U-rich phase. This fraction consistently has U-234/U-238 activity ratios below unity. The minute zircon grains constitute the major reservoir of U in the rock and act as constant rate suppliers of U-234 into the rock matrix and the pore water. The aqua regia leach fraction was found to be enriched in Th, and complementary to the HF fraction, having U-234/U-238 activity ratios above unity. It is believed that these U activity ratios reflect the surplus of having U-234 delivered from the zircon grains. Some cm-spaced samples show bulk rock U-234/U-238 activity ratios that are markedly out of equilibrium. In most of them a striking negative correlation between the total U content and the bulk rock U-234/U-238 activity ratios is observed. This is interpreted to indicate net U-234 transfer from regions of higher supply of U-234 towards those of lower supply which is, in most cases, equivalent to transfer from clayey towards carbonate/sandy portions of the rock. In contrast, the 25 cm averaged samples all have uniform bulk rock U-234/U-238 activity ratios in equilibrium, indicating U immobility in the last 1-1.5 Ma on this spatial scale. It is concluded that the small-scale lithological variations which govern U spatial distribution in the Opalinus Clay are the major factor determining U-234 in situ supply rates, regulating its diffusive fluxes and controlling the observed bulk rock U-234/U-238 activity ratios. A simple box-model is presented to simulate the measured bulk rock U-234/U-238 activity ratios and to give an additional insight into the studied system. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diffusion properties of the Opalinus Clay were studied in the underground research laboratory at Mont Terri (Canton Jura, Switzerland) and the results were compared with diffusion data measured in the laboratory on small-scale samples. The diffusion of HTO, Na-22(+), Cs+ and I- were investigated for a period of 10 months. The diffusion equipment used in the field experiment was designed in such a way that a solution of tracers was circulated through a sintered metal screen placed at the end of a borehole drilled in the formation. The concentration decrease caused by the diffusion of tracers into the rock could be followed with time and allowed first estimations of the effective diffusion coefficient. After 10 months, the diffusion zone was over-cored and the tracer profiles measured. From these profiles, effective diffusion coefficients and rock capacity factors Could be extracted by applying a two-dimensional transport model including diffusion and sorption. The simulations were done with the reactive transport code CRUNCH. In addition, results obtained from through-diffusion experiments oil small-sized samples with HTO, Cl-36(-) and Na-22(+) are presented and compared with the in situ data. In all cases. excellent agreement between the two data sets exists. Results for Cs+ indicated five times higher diffusion rates relative to HTO. Corresponding laboratory diffusion measurements are still lacking. However. our Cs+ data are in qualitative agreement wish through-diffusion data for Callovo-Oxfordian argillite rock samples. which also indicate significantly higher effective diffusivities for Cs+ relative to HTO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This prospective, randomized, controlled trial compares the performance of the pediatric i-gel (Intersurgical Ltd., Wokingham, United Kingdom) with the Ambu AuraOnce laryngeal mask (Ambu A/S, Ballerup, Denmark) in anesthetized and ventilated children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobility of naturally occurring U-238 and U-234 radionuclides was studied in a low permeability, reducing claystone formation (Opalinus Clay) near its contact with an overlying oxidising aquifer (Dogger Limestones) at Mont Terri, Switzerland. Our data point to a limited redistribution of U in some of the studied samples. Observed centimetre-scale U mobility is explained by slow diffusive transport of U-234 in the pore waters of the Opalinus Clay driven by spatially variable in situ supply (by alpha-recoil) of U-234 from the rock matrix. Metre-scale mobility is interpreted as a result of infiltration of meteoric water into the overlying aquifer which developed gradients of U concentration across the two rock formations. This triggered a slow in-diffusion of U with (U-234/U-238) > 1 into the Opalinus Clay as attested by a clear-cut pattern of decreasing bulk rock (U-234/U-238) inwards the Opalinus Clay, away from the Dogger Limestones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyvalent Ig preparations, derived from the pooled plasma of thousands of healthy donors, contain a complex mix of both 'acquired' and natural antibodies directed against pathogens as well as foreign and self/auto antigens (Ag). Depending on their formulation, donor pool size, etc., liquid Ig preparations contain monomeric and dimeric IgG. The dimeric IgG fraction is thought to represent mainly idiotype-antiidiotype Ab pairs. Treatment of all IgG fractions at pH 4 effectively monomerizes the IgG dimers resulting in separated idiotype-antiidiotype Ab pairs and thus in a comparable F(ab')(2) binding site availability of the different IgG fractions. Previously, we identified an increased anti-self-reactivity within the monomerized dimer fraction. This study addressed if, among the different IgG fractions, an analogous preferential reactivity was evident in the response against different pathogen-derived protein and carbohydrate antigens. Therefore, we assessed the activity of total unseparated IgG, the monomeric and dimeric IgG fractions against antigenic structures of bacterial and viral antigens/virulence factors. All fractions showed similar reactivity to protein antigens except for exotoxin A of Pseudomonas aeruginosa, where the dimeric fraction, especially when monomerized, showed a marked increase in reactivity. This suggests that the production of antiidiotypic IgG antibodies contributes to controlling the immune response to certain categories of pathogens. In contrast, the monomeric IgG fractions showed increased reactivity towards pathogen-associated polysaccharides, classically regarded as T-independent antigens. Taken together, the differential reactivity of the IgG fractions seems to indicate a preferential segregation of antibody reactivities according to the nature of the antigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasmall superparamagnetic iron oxide (USPIO) particles are promising contrast media, especially for molecular and cellular imaging besides lymph node staging owing to their superior NMR efficacy, macrophage uptake and lymphotropic properties. The goal of the present prospective clinical work was to validate quantification of signal decrease on high-resolution T(2)-weighted MR sequences before and 24-36 h after USPIO administration for accurate differentiation between benign and malignant normal-sized pelvic lymph nodes. Fifty-eight patients with bladder or prostate cancer were examined on a 3 T MR unit and their respective lymph node signal intensities (SI), signal-to-noise (SNR) and contrast-to-noise (CNR) were determined on pre- and post-contrast 3D T(2)-weighted turbo spin echo (TSE) images. Based on histology and/or localization, USPIO-uptake-related SI/SNR decrease of benign vs malignant and pelvic vs inguinal lymph nodes was compared. Out of 2182 resected lymph nodes 366 were selected for MRI post-processing. Benign pelvic lymph nodes showed a significantly higher SI/SNR decrease compared with malignant nodes (p < 0.0001). Inguinal lymph nodes in comparison to pelvic lymph nodes presented a reduced SI/SNR decrease (p < 0.0001). CNR did not differ significantly between benign and malignant lymph nodes. The receiver operating curve analysis yielded an area under the curve of 0.96, and the point with optimal accuracy was found at a threshold value of 13.5% SNR decrease. Overlap of SI and SNR changes between benign and malignant lymph nodes were attributed to partial voluming, lipomatosis, histiocytosis or focal lymphoreticular hyperplasia. USPIO-enhanced MRI improves the diagnostic ability of lymph node staging in normal-sized lymph nodes, although some overlap of SI/SNR-changes remained. Quantification of USPIO-dependent SNR decrease will enable the validation of this promising technique with the final goal of improving and individualizing patient care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C. dissolved inorganic C and SO(4) concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of clay surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.