46 resultados para classical field theory
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We consider a flux formulation of Double Field Theory in which fluxes are dynamical and field-dependent. Gauge consistency imposes a set of quadratic constraints on the dynamical fluxes, which can be solved by truly double configurations. The constraints are related to generalized Bianchi Identities for (non-)geometric fluxes in the double space, sourced by (exotic) branes. Following previous constructions, we then obtain generalized connections, torsion and curvatures compatible with the consistency conditions. The strong constraint-violating terms needed to make contact with gauged supergravities containing duality orbits of non-geometric fluxes, systematically arise in this formulation.
Resumo:
We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.