3 resultados para citizen science
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Organisms provide some of the most sensitive indicators of climate change and evolutionary responses are becoming apparent in species with short generation times. Large datasets on genetic polymorphism that can provide an historical benchmark against which to test for recent evolutionary responses are very rare, but an exception is found in the brown-lipped banded snail (Cepaea nemoralis). This species is sensitive to its thermal environment and exhibits several polymorphisms of shell colour and banding pattern affecting shell albedo in the majority of populations within its native range in Europe. We tested for evolutionary changes in shell albedo that might have been driven by the warming of the climate in Europe over the last half century by compiling an historical dataset for 6,515 native populations of C. nemoralis and comparing this with new data on nearly 3,000 populations. The new data were sampled mainly in 2009 through the Evolution MegaLab, a citizen science project that engaged thousands of volunteers in 15 countries throughout Europe in the biggest such exercise ever undertaken. A known geographic cline in the frequency of the colour phenotype with the highest albedo (yellow) was shown to have persisted and a difference in colour frequency between woodland and more open habitats was confirmed, but there was no general increase in the frequency of yellow shells. This may have been because snails adapted to a warming climate through behavioural thermoregulation. By contrast, we detected an unexpected decrease in the frequency of Unbanded shells and an increase in the Mid-banded morph. Neither of these evolutionary changes appears to be a direct response to climate change, indicating that the influence of other selective agents, possibly related to changing predation pressure and habitat change with effects on micro-climate.
Resumo:
The development of astrophysics in the nineteenth century drew mankind closer to the planets. For the first time, it was possible to give serious scientific consideration to the possibilities for life on other planets. The greatest leap, however, was in recognizing what was not known, and acknowledging the limits of human intuition. ‘Ideas,’ wrote Agnes M. Clerke, ‘have all at once become plastic’. As the scientific community tested the limits of scientific understanding, it became the role of science-fiction writers to imagine the universe beyond these limits. This paper will examine the ways in which nineteenth-century science fiction used the inheritance of the poetic language of Romanticism to reinstate the centrality of human being in the universe. I will explore the ways in which writers such as Edward Bulwer-Lytton (The Coming Race, 1871) and W. S. Lach-Szyrma (Aleriel, 1883) extended the Byronic hero to envisage extra-terrestrial utopias. The Hegelian systematic mythology described by Byron and Shelley had reimagined paradise and redemption on earth. Through science fiction, this mythology extended out towards the stars. A discourse on the possibilities of extra-terrestrial life became a Romantic discourse on the possibilities of being. The Byronic hero could now find a home not by escaping the shackles of religion, but as an angelic citizen of Venus or Mars. In this way, the paper will explore how science-fiction writers appropriated the language of Romantic poetry to build a bridge between the framework of scientific knowledge and the extent of human imagination.