19 resultados para chorionic villi
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The objective of the study was to determine the feasibility of generating a biodegradable, stem cell-loaded osteogenic composite graft from human placenta. Initially, a scaffold from human chorion membrane was produced. Human placenta mesenchymal stem cells (MSCs) derived from either first-trimester chorionic villi or term chorion membrane were differentiated osteogenically on this scaffold. Outgrowth, adherence, and osteogenic differentiation of cells were assessed by immunohistochemistry (IHC), scanning electron microscopy, protein expression, and real-time polymerase chain reaction (RT-PCR). Our results showed that a cell-free extracellular matrix scaffold can be generated from human chorion. Seeded MSCs densely adhered to that scaffold and were osteogenically differentiated. Calcium and alkaline phosphatase were detected in the cell-scaffold constructs as a proof of mineralization and findings were confirmed by IHC and RT-PCR results. This study shows for the first time that generation of an osteogenic composite graft using placental tissue is feasible. It might allow therapeutic application of autologous or allogeneic grafts in congenital skeletal defects by means of a composite graft.
Resumo:
OBJECTIVE: Mesenchymal stem cells (MSCs) have a broad differentiation potential. We aimed to determine if MSCs are present in fetal membranes and placental tissue and to assess their potential to differentiate into neurogenic and mesodermal lineages. STUDY DESIGN: MSCs isolated from first and third trimester chorion and amnion and first trimester chorionic villi and characterized morphologically and by flourescence-activated cell sorting analysis. Their ability to mature under different culture conditions into various cells of mesodermal and neuroectodermal cell lines was assessed by immuno- and cytochemical staining. RESULTS: Independent of gestational age, cells isolated from fetal membranes and placenta showed typical MSC phenotype (positive for CD166, CD105, CD90, CD73, CD49e, CD44, CD29, CD13, MHC I; negative for CD14, CD34, CD45, MHC II) and were able to differentiate into mesodermal cells expressing cell markers/cytologic staining consistent with mature chondroblasts, osteoblasts, adipocytes, or myocytes and into neuronal cells presenting markers of various stages of maturation. The differentiation pattern was mainly dependent on cell type. CONCLUSION: Mesenchymal cells from chorion, amnion, and villous stroma can be differentiated into neurogenic, chondrogenic, osteogenic, adipogenic, and myogenic lineage. Placental tissue obtained during prenatal chorionic villous sampling or at delivery might be an ideal source for autologous stem cell graft for peripartum neuroregeneration and other clinical issues.
Resumo:
The ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol, phospholipids, and other lipophilic molecules across cellular membranes. Recent data provide evidence that ABCA1 plays an important role in placental function but the exact cellular sites of ABCA1 action in the placenta remain controversial. To clarify this issue, we analyzed the cellular and subcellular localization of ABCA1 with immunocytochemistry, immunofluorescence and subsequent confocal or immunofluorescence microscopy in different types of isolated primary placenta cells: cytotrophoblast cells, amnion epithelial cells, villous macrophages (Hofbauer cells), and mesenchymal cells isolated from chorionic membrane and placental villi. After 12 h of cultivation, primary cytotrophoblast cells showed intensive membrane and cytoplasmic staining for ABCA1. After 24 h, with progressive syncytium formation, ABCA1 staining intensity was markedly reduced and ABCA1 was dispersed in the cytoplasm of the forming syncytial layer. In amnion epithelial cells, placental macrophages and mesenchymal cells, ABCA1 was predominantly localized at the cell membrane and cytoplasmic compartments partially corresponding to the endoplasmic reticulum. In these cell types, the ABCA1 staining intensity was not dependent on the cultivation time. In conclusion, ABCA1 shows marked expression levels in diverse placental cell types. The multitopic localization of ABCA1 in diverse human placental cells not all directly involved in materno-fetal exchange suggests that this protein may not only participate in transplacental lipid transport but could have additional regulatory functions.
Resumo:
Hyperglycosylated human chorionic gonadotropin (H-hCG) is secreted by the placenta in early pregnancy. Decreased H-hCG levels have been associated with abortion in spontaneous pregnancy. We retrospectively measured H-hCG and dimeric hCG in the sera of 87 in vitro fertilization patients obtained in the 3 weeks following embryo transfer and set the results in relation to pregnancy outcome. H-hCG and dimeric hCG were correlated (r(2) = 0.89), and were significantly decreased in biochemical pregnancy (2 microg/l and 18 IU/l, respectively) compared to early pregnancy loss (22 microg/l and 331 IU/l) and ongoing pregnancy (32 microg/l and 353 IU/l). Only H-hCG tended to discriminate between these last two groups.
Resumo:
The factors that influence Leydig cell activity currently include peptides such as neuropeptide Y (NPY). In this work we investigated the ability of this compound, injected directly into the testes of adult male rats, to alter testosterone (T) release into the general circulation. At a 5μg/kg dose administered 1h prior to challenge with human chorionic gonadotropin (hCG, 1.0 U/kg, iv), NPY significantly (P<0.01) blunted the T response to this gonadotropin. The inhibitory effect of NPY was observed in animals pretreated with an antagonist to gonadotropin-releasing hormone or not, indicating that the decrease in plasma T found was most likely independent of pituitary luteinizing hormone. However, testicular levels of steroidogenic acute regulatory (STAR) protein or translocator protein (TSPO) in the Leydig cells did not exhibit consistent changes, which suggested that other mechanisms mediated the blunted T response to hCG. We therefore used autoradiography and immunohistochemistry methodologies to identify NPY receptors in the testes, and found them primarily located on blood vessels. Competition studies further identified these receptors as being Y(1), a subtype previously reported to modulate the vasoconstrictor effect of NPY. The absence of significant changes in STAR and TSPO levels, as well as the absence of Y(1) receptors on Leydig cells, suggest that NPY-induced decreases in T release is unlikely to represent a direct effect of NPY on these cells. Rather, the very high expression levels of Y(1) found in testicular vessels supports the concept that NPY may alter gonadal activity, at least in part, through local vascular impairment of gonadotropin delivery to, and/or blunted T secretion from, Leydig cells.
Resumo:
In this study, the hypothesis was tested that the size of gastrointestinal tract (GIT) mucosal components and rates of epithelial cell proliferation and apoptosis change with increasing age. The aims were to quantitatively examine GIT histomorphology and to determine mucosal epithelial cell proliferation and apoptosis rates in neonatal (<48 h old) and adult (8 to 11.5 yr old) dogs. Morphometrical analyses were performed by light microscopy with a video-based, computer-linked system. Cell proliferation and apoptosis of the GIT epithelium were evaluated by counting the number of Ki-67 and caspase-3-positive cells, respectively, using immunohistochemical methods. Thickness of mucosal, glandular, subglandular, submucosal and muscular layers, crypt depths, villus heights, and villus widths were consistently greater (P < 0.05 to P < 0.001), whereas villus height/crypt depth ratios were smaller (P < 0.001) in adult than in neonatal dogs. The number of Ki-67-positive cells in stomach, small intestine, and colon crypts, but not in villi, was consistently greater (P < 0.01) in neonatal than in adult dogs. In contrast, the number of caspase-3-positive cells in crypts of the stomach, small intestine, and colon and in villi was not significantly influenced by age. In conclusion, canine GIT mucosal morphology and epithelial cell proliferation rates, but not apoptosis rates, change markedly from birth until adulthood is reached.
Resumo:
INTRODUCTION The ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG1 are highly expressed in the placenta in various compartments, including the villous syncytiotrophoblast (V-STB) and foetal endothelial cells. Among other not yet characterized functions, they play a role in the foeto-maternal transport of cholesterol and other lipophilic molecules. In humans, preliminary data suggest expressional changes of ABCA1 and ABCG1 in pathologic gestation, particularly under hypoxic conditions, but a systematic expression analysis in common human pregnancy diseases has never been performed. OBJECTIVES The aim of the present study was to characterize ABCA1 and ABCG1 expression in a large series of pathologic placentas, in particular from preeclampsia (PE) and intrauterine growth restriction (IUGR) which are associated with placental hypoxia. METHODS Placentas from 152 pathological pregnancies, including PE and/or HELLP (n=24) and IUGR (n=21), and 20 normal control placentas were assessed for their ABCA1 and ABCG1 mRNA and protein expression with quantitative RT-PCR and semi-quantitative immunohistochemical analysis, respectively. RESULTS ABCA1 protein expression in the V-STB was significantly less extensive in PE compared with normal controls (<10% of V-STB stained for ABCA1 in 58% PE placentas vs. 25% controls; p=0.035). Conversely, it was significantly more wide-spread in IUGR (>75% of V-STB stained in 57% IUGR placentas vs. 15% controls; p=0.009). Moreover, there was an insignificant trend for increased ABCA1 expression in fetal endothelial cells of stem villi in PE (p=0.0588). ABCA1 staining levels in V-STB were significantly associated with placental histopathological features related with hypoxia: they were decreased in placentas exhibiting syncytial knotting (p=0.033) and decidual vasculopathy (p=0.0437) and increased in low weight placentas (p=0.015). The significant and specific alterations in ABCA1 protein expression found at a specific cellular level were not paralleled by changes in ABCA1 mRNA abundance of total placental tissue. ABCG1 staining was universally extensive in the V-STB of normal placentas, always affecting more than 90% of V-STB surface. In comparison, ABCG1 staining of the V-STB was generally often reduced in pregnancy diseases. In particular, less than 90% of V-STB exhibited ABCG1 staining in 26% of PE placentas (p=0.022) and 35% of IUGR placentas (p=0.003). Similarly to ABCA1, ABCG1 mRNA expression in total placental tissue was not significantly different between controls and PE or IUGR. CONCLUSION ABCA1 and ABCG1 proteins are differentially expressed, with either down- or up-regulation, in the V-STB of placentas exhibiting features of chronic hypoxia, such as in PE and IUGR. This suggests that other factors in addition to hypoxia regulate the expression of placental lipid transporters. The specific changes on a cellular level were masked when only total tissue mRNA was analysed underlining the importance of cell specific expression analysis. The potential effects of decreased placental ABCA1 and ABCG1 expression on foetal nutrition and development remain to be elucidated.
Resumo:
Between day E8 and E12 of embryonic development, the chicken chorioallantoic membrane (CAM) undergoes massive structural rearrangement enabling calcium-uptake from the eggshell to supply the growing embryo. However, the contribution of the various cell types of the chorionic epithelium including the capillary covering (CC) cells, villus cavity (VC) cells, endothelial-like cells, and basal cells to this developmental program is largely unknown. In order to obtain markers for the different cell types in the chorionic epithelium, we determined the expression patterns of various calcium-binding annexins in the developing chicken CAM. By reverse transcription/polymerase chain reaction with primers deduced from nucleotide sequences available in various databases, the presence of annexin (anx)-1, anx-2, anx-5, and anx-6 was demonstrated at days E8 and E12. Quantitative immunoblotting with novel antibodies raised against the recombinant proteins revealed that anx-1 and anx-5 were significantly up-regulated at day E12, whereas anx-2 and anx-6 expression remained almost unchanged in comparison to levels at day E8. Immunohistochemistry of paraffin-embedded sections of E12 CAM revealed anx-1 in CC cells and VC cells. Anx-2 was localized in capillaries in the chorionic epithelium and in basal cells of the allantoic epithelium, whereas anx-6 was detected in basal cells or endothelial-like cells of the chorionic epithelium and in the media of larger vessels in the mesenchyme. A 2-day exposure of the CAM to a tumor cell spheroid resulted in strong proliferation of anx-1-expressing CC cells suggesting that these cells participate in the embryonic response to experimental intervention. Thus, annexins exhibit complementary expression patterns and represent appropriate cell markers for the further characterization of CAM development and the interpretation of results obtained when using CAM as an experimental model.
Resumo:
The ATP binding cassette transporter A1 (ABCA1) mediates cellular cholesterol and phospholipid efflux, and is implicated in phosphatidylserine translocation and apoptosis. Loss of functional ABCA1 in null mice results in severe placental malformation. This study aimed to establish the placental localisation of ABCA1 and to investigate whether ABCA1 expression is altered in placentas from pregnancies complicated by pre-eclampsia and antiphospholipid syndrome. ABCA1 mRNA and protein localisation studies were carried out using in situ hybridization and immunohistochemistry. Comparisons of gene expression were performed using real-time PCR and immunoblotting. ABCA1 mRNA and protein was localised to the apical syncytium of placental villi and endothelia of fetal blood vessels within the villi. ABCA1 mRNA expression was reduced in placentas from women with APS when compared to controls (p<0.001), and this was paralleled by reductions in ABCA1 protein expression. There were no differences in ABCA1 expression between placentas from pre-eclamptic pregnancies and controls. The localisation of ABCA1 in human placenta is consistent with a role in cholesterol and phospholipid transport. The decrease in ABCA1 protein in APS may reflect reduced cholesterol transport to the fetus affecting the formation of cell membranes and decreasing the level of substrate available for steroidogenesis.
Resumo:
Microcirculatory dysfunction contributes significantly to tissue hypoxia and multiple organ failure in sepsis. Ischemia of the gut and intestinal hypoxia are especially relevant for the evolution of sepsis because the mucosal barrier function may be impaired, leading to translocation of bacteria and toxins. Because sympathetic blockade enhances intestinal perfusion under physiologic conditions, we hypothesized that thoracic epidural anesthesia (TEA) may attenuate microcirculatory perturbations during sepsis. The present study was designed as a prospective and controlled laboratory experiment to assess the effects of continuous TEA on the mucosal microcirculation in a cecal ligation and perforation model of sepsis in rats. Anesthetized Sprague-Dawley rats underwent laparotomy and cecal ligation and perforation to induce sepsis. Subsequently, either bupivacaine 0.125% (n = 10) or isotonic sodium chloride solution (n = 9) was continuously infused via the thoracic epidural catheter for 24 h. In addition, a sham laparotomy was carried out in eight animals. Intravital videomicroscopy was then performed on six to ten villi of ileum mucosa. The capillary density was measured as areas encircled by perfused capillaries, that is, intercapillary areas. The TEA accomplished recruitment of microcirculatory units in the intestinal mucosa by decreasing total intercapillary areas (1,317 +/- 403 vs. 1,001 +/- 236 microm2) and continuously perfused intercapillary areas (1,937 +/- 512 vs. 1,311 +/- 678 microm2, each P < 0.05). Notably, TEA did not impair systemic hemodynamic variables beyond the changes caused by sepsis itself. Therefore, sympathetic blockade may represent a therapeutic option to treat impaired microcirculation in the gut mucosa resulting from sepsis. Additional studies are warranted to assess the microcirculatory effects of sympathetic blockade on other splanchnic organs in systemic inflammation.
Resumo:
OBJECTIVE: Orthogonal polarization spectral (OPS) imaging is used to assess mucosal microcirculation. We tested sensitivity and variability of OPS in the assessment of mesenteric blood flow (Q (sma)) reduction. SETTING: University Animal Laboratory. INTERVENTIONS: In eight pigs, Q (sma) was reduced in steps of 15% from baseline; five animals served as controls. Jejunal mucosal microcirculatory blood flow was recorded with OPS and laser Doppler flowmetry at each step. OPS data from each period were collected and randomly ordered. Samples from each period were individually chosen by two blinded investigators and quantified [capillary density (number of vessels crossing predefined lines), number of perfused villi] after agreement on the methodology. MEASUREMENT AND RESULTS: Interobserver coefficient of variation (CV) for capillary density from samples representing the same flow condition was 0.34 (0.04-1.41) and intraobserver CV was 0.10 (0.02-0.61). Only one investigator observed a decrease in capillary density [to 62% (48-82%) of baseline values at 45% Q (sma) reduction; P = 0.011], but comparisons with controls never revealed significant differences. In contrast, reduction in perfused villi was detected by both investigators at 75% of mesenteric blood flow reduction. Laser Doppler flow revealed heterogeneous microcirculatory perfusion. CONCLUSIONS: Assessment of capillary density did not reveal differences between animals with and without Q (sma) reduction, and evaluation of perfused villi revealed blood flow reduction only when Q (sma) was very low. Potential explanations are blood flow redistribution and heterogeneity, and suboptimal contrast of OPS images. Despite agreement on the method of analysis, interobserver differences in the quantification of vessel density on gut mucosa using OPS are high.
Resumo:
The extents of functional surfaces (villi, microvilli) have been estimated at different longitudinal sites, and in the entire small intestine, for three species of bats belonging to two feeding groups: insect- and fruit-eaters. In all species, surface areas and other structural quantities tended to be greatest at more cranial sites and to decline caudally. The entomophagous bat (Miniopterus inflatus) had a mean body mass (coefficient of variation) of 8.9 g (5%) and a mean intestinal length of 20 cm (6%). The surface area of the basic intestinal tube (primary mucosa) was 9.1 cm2 (10%) but this was amplified to 48 cm2 (13%) by villi and to 0.13 m2 (20%) by microvilli. The total number of microvilli per intestine was 4 x 10(11) (20%). The average microvillus had a diameter of 8 nm (10%), a length of 1.1 microns (22%) and a membrane surface area of 0.32 micron 2 (31%). In two species of fruit bats (Epomophorus wahlbergi and Lisonycteris angolensis), body masses were greater and intestines longer, the values being 76.0 g (18%) and 76.9 g (4%), and 73 cm (16%) and 72 cm (7%), respectively. Surface areas were also greater, amounting to 76 cm2 (26%) and 45 cm2 (8%) for the primary mucosa, 547 cm2 (29%) and 314 cm2 (16%) for villi and 2.7 m2 (23%) and 1.5 m2 (18%) for microvilli. An increase in the number of microvilli, 33 x 10(11) (19%) and 15 x 10(11) (24%) per intestine, contributed to the more extensive surface area but there were concomitant changes in the dimensions of microvilli. Mean diameters were 94 nm (8%) and 111 nm (4%), and mean lengths were 2.8 microns (12%) and 2.9 microns (10%), respectively. Thus, an increase in the surface area of the average microvillus to 0.83 micron 2 (12%) and 1.02 microns 2 (11%) also contributed to the greater total surface area of microvilli. The lifestyle-related differences in total microvillous surface areas persisted when structural quantities were normalised for the differences in body masses. The values for total microvillous surface area were 148 cm2g-1 (20%) in the entomophagous bat, 355 cm2g-1 (20%) in E. wahlbergi and 192 cm2g-1 (17%) in L. angolensis. This was true despite the fact that the insecteater possessed a greater length of intestine per unit of body mass: 22 mm g-1 (8%) versus 9-10 mm g-1 (9-10%) for the fruit-eaters.
Resumo:
The objective of the present study was to describe the arthroscopic anatomy of the bovine fetlock joint using one palmar/plantar and three dorsal joint approaches. A comparative anatomic, ultrasonographic and arthroscopic study using 20 cadaveric feet from 13 non-lame adult dairy cows was performed. Arthroscopy was accomplished using a rigid arthroscope to view the synovial cavities with their synovial villi and parts of the following structures: the distal ends of the metacarpal/metatarsal III/IV bones with their trochleae and sagittal ridges, synovial grooves, the articular surfaces of the proximal sesamoid bones, the proximal aspects of the first phalanges, the lateral and medial collateral ligaments, the suspensory ligament and the interdigital ligaments as parts of the interosseus muscle, the cruciate sesamoidean ligaments, the communication site between the lateral and medial pouch in the palmar/plantar area, and dorsally the septum between the lateral and the medial pouch. The technique allowed a good overall view of most relevant structures in the sound cadaver joint. Further investigations are warranted to evaluate the diagnostic, therapeutic and prognostic applications of these techniques in the treatment of septic arthritis.
Resumo:
BACKGROUNDS In vitro fertilization involves high dosage gonadotropin stimulation, which apparently has some negative impact on follicular endocrine function. As chorionic gonadotropin stimulation has been shown to increase the blood-follicular permeability in animal models, this raises the question if such an effect also applies to gonadotropins in humans, possibly affecting the endocrine follicular milieu. FINDINGS Follicular fluid and serum were collected at the time of follicular aspiration in in vitro fertilisation without (Natural cycle IVF, n = 24) and with (conventional gonadotropin stimulated IVF, n = 31) gonadotropin stimulation. The concentration of the extra-ovarian hormones prolactin and cortisol were analysed by immunoassays. RESULTS Median serum prolactin and cortisol concentrations were 12.3 ng/mL and 399 nmol/L without versus 32.2 ng/mL and 623 nmol/L with gonadotropin stimulation. The corresponding concentrations in follicular fluid were 20.6 ng/mL and 445 nmol/L versus 28.8 ng/ml and 456 nmol/L for prolactin and cortisol. As a consequence, mean follicular fluid:serum ratios were significantly reduced under gonadotropin stimulation (prolactin p = 0.0138, cortisol p = 0.0001). As an enhanced blood-follicular permeability and transportation, induced by gonadotropin stimulation, would result in increased instead of decreased follicular fluid:serum ratios as found in this study, it can be assumed that this does not affect extra-ovarian protein and steroid hormones as illustrated by prolactin and cortisol. CONCLUSIONS The model of serum follicular fluid:serum ratio of hormones, produced outside the ovaries, did not reveal a gonadotropin induced increased blood-follicular transportation capacity. Therefore it can be assumed that the effect of gonadotropins on follicular endocrine function is not due to an increased ovarian permeability of extra-ovarian hormones.