44 resultados para cholesterol ester storage disease

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS High-density lipoprotein (HDL) cholesterol is a strong predictor of cardiovascular mortality. This work aimed to investigate whether the presence of coronary artery disease (CAD) impacts on its predictive value. METHODS AND RESULTS We studied 3141 participants (2191 males, 950 females) of the LUdwigshafen RIsk and Cardiovascular health (LURIC) study. They had a mean ± standard deviation age of 62.6 ± 10.6 years, body mass index of 27.5 ± 4.1 kg/m², and HDL cholesterol of 38.9 ± 10.8 mg/dL. The cohort consisted of 699 people without CAD, 1515 patients with stable CAD, and 927 patients with unstable CAD. The participants were prospectively followed for cardiovascular mortality over a median (inter-quartile range) period of 9.9 (8.7-10.7) years. A total of 590 participants died from cardiovascular diseases. High-density lipoprotein cholesterol by tertiles was inversely related to cardiovascular mortality in the entire cohort (P = 0.009). There was significant interaction between HDL cholesterol and CAD in predicting the outcome (P = 0.007). In stratified analyses, HDL cholesterol was strongly associated with cardiovascular mortality in people without CAD [3rd vs. 1st tertile: HR (95% CI) = 0.37 (0.18-0.74), P = 0.005], but not in patients with stable [3rd vs. 1st tertile: HR (95% CI) = 0.81 (0.61-1.09), P = 0.159] and unstable [3rd vs. 1st tertile: HR (95% CI) = 0.91 (0.59-1.41), P = 0.675] CAD. These results were replicated by analyses in 3413 participants of the AtheroGene cohort and 5738 participants of the ESTHER cohort, and by a meta-analysis comprising all three cohorts. CONCLUSION The inverse relationship of HDL cholesterol with cardiovascular mortality is weakened in patients with CAD. The usefulness of considering HDL cholesterol for cardiovascular risk stratification seems limited in such patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Traditional approaches for nighttime glycemic control in glycogen storage disease type I (GSDI) include continuous tube feeding, or ingestion of uncooked corn starch (CS) at bedtime. A modified corn starch (MCS) has been shown to prolong euglycemia in some patients. The aim of this study was to evaluate whether stable nighttime glucose control can be achieved with other types of slowly digested carbohydrates in adult GSDI patients. METHODS In this cross-over study, nocturnal glucose control and fasting times were assessed with three different nocturnal nutrition regimens in five patients, using continuous glucose monitoring (CGMS) in an outpatient everyday life setting. For each patient, continuous glucose profiles were measured after ingestion of (1) CS, (2) MCS or (3) a pasta meal at bedtime, during 5 to 6 consecutive nights for each regimen. RESULTS Stable nocturnal glucose control was achieved for all patients with a pasta meal, with a mean duration of glycemia >3.5 mmol/l of 7.6 h (range 5.7-10.8), and >4 mmol/l of 7 h (5.2-9.2), similar to CS and MCS. Fasting glucose before breakfast on workdays (after 7.1 ± 0.8 h) was not significantly different between the three interventions (CS 4.1 ± 0.5 mmol/l, MCS 4.6 ± 0.7 mmol/l, pasta 4.3 ± 0.9 mmol/l). During prolonged fasting on weekends, longer duration of normoglycemia was achieved with CS or MCS than with pasta. CONCLUSION Consumption of cooked pasta is a suitable and more palatable alternative to uncooked corn starch to achieve nighttime glucose control in adult patients with GSDI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult-type Pompe's disease (glycogen storage disease type II) has rarely been shown to present with dilatative arteriopathy, suggesting potential smooth muscle involvement in addition to lysosomal glycogen deposits usually restricted to skeletal muscle tissue. We report the case of a middle-aged man under enzyme replacement therapy presenting with an exceedingly large thoracic aortic aneurysm. Surprisingly, the histological work-up of resected aortic tissue revealed changes mimicking those observed in patients with classic connective tissue diseases. Enzyme replacement therapy, in addition to musculoskeletal and pulmonary treatment for patients with Pompe's disease, may prolong survival and lead to patients presenting with vascular alterations that may pose surgical and potential diagnostic challenges in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycogen storage disease type II is a rare multi-systemic disorder characterised by an intracellular accumulation of glycogen due a mutation in the acid alpha glucosidase (GAA) gene. The level of residual enzyme activity, the genotype and other yet unknown factors account for the broad variation of the clinical phenotype. The classical infantile form is characterised by severe muscle hypotonia and cardiomyopathy leading to early death. The late-onset form presents as a limb girdle myopathy with or without pulmonary dysfunction. Enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA) in infants is life saving. In contrast, therapeutic efficacy of rhGAA in the late-onset form is modest. High expenses of rhGAA, on-going infusions and poor pharmacokinetic efficacy raised a discussion of the cost effectiveness of ERT in late-onset Pompe disease in Switzerland. This discussion was triggered by a Swiss federal court ruling which confirmed the reluctance of a health care insurer not to reimburse treatment costs in a 67-year-old female suffering from Pompe disease. As a consequence of this judgement ERT was stopped by all insurance companies in late-onset Pompe patients in Switzerland regardless of their clinical condition. Subsequent negotiations lead to the release of a national guideline of the management of late-onset Pompe disease. Initiation and limitation of ERT is outlined in a national Pompe registry. Reimbursement criteria are defined and individual efficacy of ERT with rhGAA is continuously monitored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical, gross, histopathologic, electron microscopic findings and enzymatic analysis of 4 captive, juvenile springboks (Antidorcas marsupialis) showing both polycystic kidneys and a storage disease are described. Springbok offspring (4 of 34; 12%) were affected by either one or both disorders in a German zoo within a period of 5 years (2008-2013). Macroscopic findings included bilaterally severely enlarged kidneys displaying numerous cysts in 4 animals and superior brachygnathism in 2 animals. Histopathologically, kidneys of 4 animals displayed cystic dilation of the renal tubules. In addition, abundant cytoplasmic vacuoles with a diameter ranging from 2 to 10 μm in neurons of the central and peripheral nervous system, hepatocytes, thyroid follicular epithelial cells, pancreatic islets of Langerhans and renal tubular cells were found in 2 springbok neonates indicative of an additional storage disease. Ultrastructurally, round electron-lucent vacuoles, up to 4 μm in diameter, were present in neurons. Enzymatic analysis of liver and kidney tissue of 1 affected springbok revealed a reduced activity of total hexosaminidase (Hex) with relatively increased HexA activity at the same level of total Hex, suggesting a hexosaminidase defect. Pedigree analysis suggested a monogenic autosomal recessive inheritance for both diseases. In summary, related springboks showed 2 different changes resembling both polycystic kidney and a GM2 gangliosidosis similar to the human Sandhoff disease. Whether the simultaneous occurrence of these 2 entities represents an incidental finding or has a genetic link needs to be investigated in future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Fibrinogen storage disease (FSD) is characterized by hypofibrinogenemia and hepatic inclusions due to impaired release of mutant fibrinogen which accumulates and aggregates in the hepatocellular endoplasmic reticulum. Liver disease is variable. AIM We studied a new Swiss family with fibrinogen Aguadilla. In order to understand the molecular peculiarity of FSD mutations, fibrinogen Aguadilla and the three other causative mutations, all located in the γD domain, were modelled. METHOD The proband is a Swiss girl aged 4 investigated because of fatigue and elevated liver enzymes. Protein structure models were prepared using the Swiss-PdbViewer and POV-Ray software. RESULTS The proband was found to be heterozygous for fibrinogen Aguadilla: FGG Arg375Trp. Familial screening revealed that her mother and maternal grandmother were also affected and, in addition, respectively heterozygous and homozygous for the hereditary haemochromatosis mutation HFE C282Y. Models of backbone and side-chain interactions for fibrinogen Aguadilla in a 10-angstrom region revealed the loss of five H-bonds and the gain of one H-bond between structurally important amino acids. The structure predicted for fibrinogen Angers showed a novel helical structure in place of hole 'a' on the outer edge of γD likely to have a negative impact on fibrinogen assembly and secretion. CONCLUSION The mechanism by which FSD mutations generate hepatic intracellular inclusions is still not clearly established although the promotion of aberrant intermolecular strand insertions is emerging as a likely cause. Reporting new cases is essential in the light of novel opportunities of treatment offered by increasing knowledge of the degradation pathway and autophagy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-galactosidase (GLB1) forms a functional lysosomal multienzyme complex with lysosomal protective protein (PPCA) and neuraminidase 1 (NEU1) which is important for its intracellular processing and activity. Mutations in the beta-galactosidase gene cause the lysosomal storage disease G(M1)-gangliosidosis. In order to identify additional molecular changes associated with the presence of beta-galactosidase mutations, the expression of canine lysosomal multienzyme complex components in GLB1(+/+), GLB1(+/-) and GLB1(-/-) fibroblasts was investigated by quantitative RT-PCR, Western blot and enzymatic assays. Quantitative RT-PCR revealed differential regulation of total beta-galactosidase, beta-galactosidase variants and protective protein for beta-galactosidase gene (PPGB) in GLB1(+/-) and GLB1(-/-) compared to GLB1(+/+) fibroblasts. Furthermore, it was shown that PPGB levels gradually increased with the number of mutant beta-galactosidase alleles while no change in the NEU1 expression was observed. This is the first study that simultaneously examine the effect of GLB1(+/+), GLB1(+/-) and GLB1(-/-) genotypes on the expression of lysosomal multienzyme complex components. The findings reveal a possible adaptive process in GLB1 homozygous mutant and heterozygous individuals that could facilitate the design of efficient therapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fucosidosis is a rare lysosomal storage disease. A 14-year-old girl is presented, with recurrent infections, progressive dystonic movement disorder and mental retardation with onset in early childhood. The clinical picture was also marked by mild morphologic features, but absent dysostosis multiplex and organomegaly. MRI images at 6.5 years of age were reminiscent of pallidal iron deposition ("eye-of-the-tiger" sign) seen in neurodegeneration with brain iron accumulation (NBIA) disorders. Progressively spreading angiokeratoma corporis diffusum led to the correct diagnosis. This case extends the scope of clinical and neuroradiological manifestations of fucosidosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The G M1-gangliosidosis is an autosomal recessive lysosomal storage disease caused by structural defects of the beta-galactosidase gene (GLB1) which lead to a severe phenotypical impairment in homozygous individuals, whereas heterozygous carriers remain clinically normal. Currently employed DNA parentage tests include the analysis of microsatellites, which also have a diagnostic predictive value. The aim of this study was to provide a reliable tool for genotyping the canine GLB1 which can be effectively integrated in parentage testing investigations. For this purpose the association between the GLB1 gene and the AHT K253 microsatellite was analyzed in 30 Alaskan huskies (11 GLB1+/+, 17 GLB1+/- and 2 GLB1-/- dogs). The 143 bp AHT K253 microsatellite allele was identified only in GLB1+/- and GLB1-/- animals and was in strong linkage disequilibrium with the causative mutation for G M1-gangliosidosis, a 19 bp duplication within exon 15 of the GLB1 gene. The results of the present study revealed a 100% concordance between the previous established genotypes and those obtained after the analysis of the AHT K253 microsatellite. Thus, the genotype of the AHT K253 microsatellite, which is routinely determined during dog parentage testing, has a high predictive value for the G M1-gangliosidosis carrier status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GM(1)-gangliosidosis is a lysosomal storage disease that is inherited as an autosomal recessive disorder, predominantly caused by structural defects in the beta-galactosidase gene (GLB1). The molecular cause of GM(1)-gangliosidosis in Alaskan huskies was investigated and a novel 19-bp duplication in exon 15 of the GLB1 gene was identified. The duplication comprised positions +1688-+1706 of the GLB1 cDNA. It partially disrupted a potential exon splicing enhancer (ESE), leading to exon skipping in a fraction of the transcripts. Thus, the mutation caused the expression of two different mRNAs from the mutant allele. One transcript contained the complete exon 15 with the 19-bp duplication, while the other transcript lacked exon 15. In the transcript containing exon 15 with the 19-bp duplication a premature termination codon (PTC) appeared, but due to its localization in the last exon of canine GLB1, nonsense-mediated RNA decay (NMD) did not occur. As a consequence of these molecular events two different truncated GLB1 proteins are predicted to be expressed from the mutant GLB1 allele. In heterozygous carrier animals the wild-type allele produces sufficient amounts of the active enzyme to prevent clinical signs of disease. In affected homozygous dogs no functional GLB1 is synthesized and G(M1)-gangliosidosis occurs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Endothelial dysfunction is a marker for development and progression of atherosclerosis. Statin therapy improves endothelial function in cardiovascular patients by reducing LDL-cholesterol and by pleiotropic effects. B-group vitamin supplementation restores endothelial function mainly by reducing homocysteine-induced oxidative stress. Thus, we evaluated the effect of rosuvastatin, B-group vitamins and their combination on endothelial function in high-risk cardiovascular patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hormone sensitive lipase (HSL) regulates the hydrolysis of acylglycerols and cholesteryl esters (CE) in various cells and organs, including enterocytes of the small intestine. The physiological role of this enzyme in enterocytes, however, stayed elusive. In the present study we generated mice lacking HSL exclusively in the small intestine (HSLiKO) to investigate the impact of HSL deficiency on intestinal lipid metabolism and the consequences on whole body lipid homeostasis. Chow diet-fed HSLiKO mice showed unchanged plasma lipid concentrations. In addition, feeding with high fat/high cholesterol (HF/HC) diet led to unaltered triglyceride but increased plasma cholesterol concentrations and CE accumulation in the small intestine. The same effect was observed after an acute cholesterol load. Gavaging of radioactively labeled cholesterol resulted in increased abundance of radioactivity in plasma, liver and small intestine of HSLiKO mice 4h post-gavaging. However, cholesterol absorption determined by the fecal dual-isotope ratio method revealed no significant difference, suggesting that HSLiKO mice take up the same amount of cholesterol but in an accelerated manner. mRNA expression levels of genes involved in intestinal cholesterol transport and esterification were unchanged but we observed downregulation of HMG-CoA reductase and synthase and consequently less intestinal cholesterol biosynthesis. Taken together our study demonstrates that the lack of intestinal HSL leads to CE accumulation in the small intestine, accelerated cholesterol absorption and decreased cholesterol biosynthesis, indicating that HSL plays an important role in intestinal cholesterol homeostasis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To examine by secondary analysis of the Treating to New Targets (TNT) study whether the benefits of intensive versus standard levels of lipid lowering are equally applicable to women. METHODS: A total of 10 001 patients (1902 women) with stable coronary heart disease (CHD) were randomised to double-blind treatment with atorvastatin 10 or 80 mg/day for a median follow-up of 4.9 years. RESULTS: In women and men, intensive treatment with atorvastatin 80 mg significantly reduced the rate of major cardiovascular events compared with atorvastatin 10 mg. Among women, the relative and absolute reductions were 27% and 2.7%, respectively (hazard ratio (HR) = 0.73, 95% confidence interval (CI) 0.54 to 1.00, p = 0.049). In men, the corresponding rate reductions were 21% and 2.2% (HR = 0.79, 95% CI 0.69 to 0.91, p = 0.001). The number needed to treat value (to prevent one cardiovascular event over 4.9 years compared with patients treated with atorvastatin 10 mg) for atorvastatin 80 mg was 29 for women and 30 for men. Rates of death of non-cardiovascular origin in the atorvastatin 80 mg and atorvastatin 10 mg were 3.6% and 1.6%, respectively (p = 0.004) among women, and 2.8% and 3.1% (p = 0.47) among men. CONCLUSION: Intensive lipid-lowering treatment with atorvastatin 80 mg produced significant reductions in relative risk for major cardiovascular events compared with atorvastatin 10 mg in both women and men with stable CHD.