20 resultados para chemical synthesis

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of epothilone B and D analogues bearing isomeric quinoline or functionalized benzimidazole side chains has been prepared by chemical synthesis in a highly convergent manner. All analogues have been found to interact with the tubulin/microtubule system and to inhibit human cancer cell proliferation in vitro, albeit with different potencies (IC(50) values between 1 and 150 nM). The affinity of quinoline-based epothilone B and D analogues for stabilized microtubules clearly depends on the position of the N-atom in the quinoline system, while the induction of tubulin polymerization in vitro appears to be less sensitive to N-positioning. The potent inhibition of human cancer cell growth by epothilone analogues bearing functionalized benzimidazole side chains suggests that these systems might be conjugated with tumor-targeting moieties to form tumor-targeted prodrugs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the simplest questions that can be asked about molecular diversity is how many organic molecules are possible in total? To answer this question, my research group has computationally enumerated all possible organic molecules up to a certain size to gain an unbiased insight into the entire chemical space. Our latest database, GDB-17, contains 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens, by far the largest small molecule database reported to date. Molecules allowed by valency rules but unstable or nonsynthesizable due to strained topologies or reactive functional groups were not considered, which reduced the enumeration by at least 10 orders of magnitude and was essential to arrive at a manageable database size. Despite these restrictions, GDB-17 is highly relevant with respect to known molecules. Beyond enumeration, understanding and exploiting GDBs (generated databases) led us to develop methods for virtual screening and visualization of very large databases in the form of a “periodic system of molecules” comprising six different fingerprint spaces, with web-browsers for nearest neighbor searches, and the MQN- and SMIfp-Mapplet application for exploring color-coded principal component maps of GDB and other large databases. Proof-of-concept applications of GDB for drug discovery were realized by combining virtual screening with chemical synthesis and activity testing for neurotransmitter receptor and transporter ligands. One surprising lesson from using GDB for drug analog searches is the incredible depth of chemical space, that is, the fact that millions of very close analogs of any molecule can be readily identified by nearest-neighbor searches in the MQN-space of the various GDBs. The chemical space project has opened an unprecedented door on chemical diversity. Ongoing and yet unmet challenges concern enumerating molecules beyond 17 atoms and synthesizing GDB molecules with innovative scaffolds and pharmacophores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in synthesis, metabolism, and transport of bile acids and thus plays a major role in maintaining bile acid homeostasis. In this study, metabolomic responses were investigated in urine of wild-type and Fxr-null mice fed cholic acid, an FXR ligand, using ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS). Multivariate data analysis between wild-type and Fxr-null mice on a cholic acid diet revealed that the most increased ions were metabolites of p-cresol (4-methylphenol), corticosterone, and cholic acid in Fxr-null mice. The structural identities of the above metabolites were confirmed by chemical synthesis and by comparing retention time (RT) and/or tandem mass fragmentation patterns of the urinary metabolites with the authentic standards. Tauro-3alpha,6,7alpha,12alpha-tetrol (3alpha,6,7alpha,12alpha-tetrahydroxy-5beta-cholestan-26-oyltaurine), one of the most increased metabolites in Fxr-null mice on a CA diet, is a marker for efficient hydroxylation of toxic bile acids possibly through induction of Cyp3a11. A cholestatic model induced by lithocholic acid revealed that enhanced expression of Cyp3a11 is the major defense mechanism to detoxify cholestatic bile acids in Fxr-null mice. These results will be useful for identification of biomarkers for cholestasis and for determination of adaptive molecular mechanisms in cholestasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Production of native antigens for serodiagnosis of helminthic infections is laborious and hampered by batch-to-batch variation. For serodiagnosis of echinococcosis, especially cystic disease, most screening tests rely on crude or purified Echinococcus granulosus hydatid cyst fluid. To resolve limitations associated with native antigens in serological tests, the use of standardized and highly pure antigens produced by chemical synthesis offers considerable advantages, provided appropriate diagnostic sensitivity and specificity is achieved. METHODOLOGY/PRINCIPAL FINDINGS: Making use of the growing collection of genomic and proteomic data, we applied a set of bioinformatic selection criteria to a collection of protein sequences including conceptually translated nucleotide sequence data of two related tapeworms, Echinococcus multilocularis and Echinococcus granulosus. Our approach targeted alpha-helical coiled-coils and intrinsically unstructured regions of parasite proteins potentially exposed to the host immune system. From 6 proteins of E. multilocularis and 5 proteins of E. granulosus, 45 peptides between 24 and 30 amino acids in length were designed. These peptides were chemically synthesized, spotted on microarrays and screened for reactivity with sera from infected humans. Peptides reacting above the cut-off were validated in enzyme-linked immunosorbent assays (ELISA). Peptides identified failed to differentiate between E. multilocularis and E. granulosus infection. The peptide performing best reached 57% sensitivity and 94% specificity. This candidate derived from Echinococcus multilocularis antigen B8/1 and showed strong reactivity to sera from patients infected either with E. multilocularis or E. granulosus. CONCLUSIONS/SIGNIFICANCE: This study provides proof of principle for the discovery of diagnostically relevant peptides by bioinformatic selection complemented with screening on a high-throughput microarray platform. Our data showed that a single peptide cannot provide sufficient diagnostic sensitivity whereas pooling several peptide antigens improved sensitivity; thus combinations of several peptides may lead the way to new diagnostic tests that replace, or at least complement conventional immunodiagnosis of echinococcosis. Our strategy could prove useful for diagnostic developments in other pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein, we report the discovery of the first potent and selective inhibitor of TRPV6, a calcium channel overexpressed in breast and prostate cancer, and its use to test the effect of blocking TRPV6-mediated Ca2+-influx on cell growth. The inhibitor was discovered through a computational method, xLOS, a 3D-shape and pharmacophore similarity algorithm, a type of ligand-based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule, two successive rounds of LBVS followed by optimization by chemical synthesis led to a selective molecule with 0.3 μM inhibition of TRPV6. The ability of xLOS to identify different scaffolds early in LBVS was essential to success. The xLOS method may be generally useful to develop tool compounds for poorly characterized targets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the central nervous system.[1] It is difficult to characterize transmembrane dynamic receptors with classical structural biology approaches like crystallization and x-ray. The use of photoaffinity probes is an alternative approach to identify regions in the protein that are important for the binding of small molecules. Therefore we synthesized a small library of photoaffinity probes by conjugating photolabile building blocks via various linkers to granisetron which is a known antagonist of the 5-HT3R. We were able to obtain several compounds with diverse linker lengths and different photo-labile moieties that show nanomolar binding affinities for the orthosteric binding site. Further on we developed a stable 5-HT3R overexpressing cell line and a purification method to yield the receptor in a high purity. Currently we are investigating crosslinking experiments and subsequent MS – analysis.