76 resultados para checkpoint kinase 2

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukaemia (APL) patients are successfully treated with all-trans retinoic acid (ATRA). However, concurrent chemotherapy is still necessary and less toxic therapeutic approaches are needed. Earlier studies suggested that in haematopoietic neoplasms, the green tea polyphenol epigallocatechin-3-gallate (EGCG) induces cell death without adversely affecting healthy cells. We aimed at deciphering the molecular mechanism of EGCG-induced cell death in acute myeloid leukaemia (AML). A significant increase of death-associated protein kinase 2 (DAPK2) levels was found in AML cells upon EGCG treatment paralleled by increased cell death that was significantly reduced upon silencing of DAPK2. Moreover, combined ATRA and EGCG treatment resulted in cooperative DAPK2 induction and potentiated differentiation. EGCG toxicity of primary AML blasts correlated with 67 kDa laminin receptor (67LR) expression. Pretreatment of AML cells with ATRA, causing downregulation of 67LR, rendered these cells resistant to EGCG-mediated cell death. In summary, it was found that (i) DAPK2 is essential for EGCG-induced cell death in AML cells, (ii) ATRA and EGCG cotreatment significantly boosted neutrophil differentiation, and 67LR expression correlates with susceptibility of AML cells to EGCG. We thus suggest that EGCG, by selectively targeting leukaemic cells, may improve differentiation therapies for APL and chemotherapy for other AML subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two ubiquitously expressed sphingosine kinases (SphK) 1 and 2 are key regulators of the sphingolipid signaling pathway. Despite the formation of an identical messenger, i.e. sphingosine 1-phosphate (S1P), they exert strikingly different functions. Particularly, SphK2 is necessary for the phosphorylation of the sphingosine analog fingolimod (FTY720), which is protective in rodent stroke models. Using gene deficient mice lacking either SphK1 or SphK2, we investigated the role of the two lipid kinases in experimental stroke. We performed 2h transient middle cerebral artery occlusion (tMCAO) and analyzed lesion size and neurological function after 24h. Treatment groups received 1mg/kg FTY720. Neutrophil infiltration, microglia activation, mRNA and protein expression of SphK1, SphK2 and the S1P(1) receptor after tMCAO were studied. Genetic deletion of SphK2 but not SphK1 increased ischemic lesion size and worsened neurological function after tMCAO. The protective effect of FTY720 was conserved in SphK1(-/-) mice but not in SphK2(-/-) mice. This suggests that SphK2 activity is an important endogenous protective mechanism in cerebral ischemia and corroborates that the protective effect of FTY720 is mediated via phospho-FTY720.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G-protein-coupled receptor kinase 2 (GRK2) is a primary regulator of β-adrenergic signaling in the heart. G-protein-coupled receptor kinase 2 ablation impedes heart failure development, but elucidation of the cellular mechanisms has not been achieved, and such elucidation is the aim of this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The death-associated protein kinase 2 (DAPK2) belongs to a family of Ca(2+)/calmodulin-regulated serine/threonine kinases involved in apoptosis. During investigation of candidate genes operative in granulopoiesis, we identified DAPK2 as highly expressed. Subsequent investigations demonstrated particularly high DAPK2 expression in normal granulocytes compared with monocytes/macrophages and CD34(+) progenitor cells. Moreover, significantly increased DAPK2 mRNA levels were seen when cord blood CD34(+) cells were induced to differentiate toward neutrophils in tissue culture. In addition, all-trans retinoic acid (ATRA)-induced neutrophil differentiation of two leukemic cell lines, NB4 and U937, revealed significantly higher DAPK2 mRNA expression paralleled by protein induction. In contrast, during differentiation of CD34(+) and U937 cells toward monocytes/macrophages, DAPK2 mRNA levels remained low. In primary leukemia, low expression of DAPK2 was seen in acute myeloid leukemia samples, whereas chronic myeloid leukemia samples in chronic phase showed intermediate expression levels. Lentiviral vector-mediated expression of DAPK2 in NB4 cells enhanced, whereas small interfering RNA-mediated DAPK2 knockdown reduced ATRA-induced granulocytic differentiation, as evidenced by morphology and neutrophil stage-specific maturation genes, such as CD11b, G-CSF receptor, C/EBPepsilon, and lactoferrin. In summary, our findings implicate a role for DAPK2 in granulocyte maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2) activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R) injury. To do this we utilized two independent lines of GRK2 knockout (KO) mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Death-associated protein kinase 2 (DAPK2) is a Ca(2+)/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein's subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function. OBJECTIVE To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function. METHODS AND RESULTS We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo. CONCLUSIONS We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both of the sphingosine kinase (SK) subtypes SK-1 and SK-2 catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate (S1P). However, the subtype-specific cellular functions are largely unknown. In this study, we investigated the cellular function of SK-2 in primary mouse renal mesangial cells (mMC) and embryonic fibroblasts (MEF) from wild-type C57BL/6 or SK-2 knockout (SK2ko) mice. We found that SK2ko cells displayed a significantly higher proliferative and migratory activity when compared to wild-type cells, with concomitant increased cellular activities of the classical extracellular signal regulated kinase (ERK) and PI3K/Akt cascades, and of the small G protein RhoA. Furthermore, we detected an upregulation of SK-1 protein and S1P3 receptor mRNA expression in SK-2ko cells. The MEK inhibitor U0126 and the S1P1/3 receptor antagonist VPC23019 blocked the increased migration of SK-2ko cells. Additionally, S1P3ko mesangial cells showed a reduced proliferative behavior and reduced migration rate upon S1P stimulation, suggesting a crucial involvement of the S1P3 receptor. In summary, our data demonstrate that SK-2 exerts suppressive effects on cell growth and migration in renal mesangial cells and fibroblasts, and that therapeutic targeting of SKs for treating proliferative diseases requires subtype-selective inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immunomodulatory drug FTY720 is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that requires activation by sphingosine kinase 2 (SK-2) to induce T cell homing to secondary lymphoid tissue. In this study, we have investigated the role of SK-2 in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. We show that SK-2 deficiency reduced clinical symptoms of EAE. Furthermore, in SK-2-deficient mice, the protective effect of FTY720 on EAE was abolished, while the non-prodrug FTY720-derivative ST-968 was still fully active. Protection was paralleled by reduced numbers of T-lymphocytes in blood and a reduced blood-brain-barrier leakage. This correlated with reduced mRNA expression of ICAM-1, VCAM-1, but enhanced expression of PECAM-1. A similar regulation of permeability and of PECAM-1 was seen in primary cultures of isolated mouse brain vascular endothelial cells and in a human immortalized cell line upon SK-2 knockdown. In summary, these data demonstrated that deletion of SK-2 exerts a protective effect on the pathogenesis of EAE in C57BL/6 mice and that SK-2 is essential for the protective effect of FTY720 but not of ST-968. Thus, ST-968 is a promising novel immunomodulatory compound that may be a valuable alternative to FTY720 under conditions where SK-2 activity is limited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Eosinophil differentiation, activation, and survival are largely regulated by IL-5. IL-5-mediated transmembrane signal transduction involves both Lyn-mitogen-activated protein kinases and Janus kinase 2-signal transducer and activator of transcription pathways. OBJECTIVE: We sought to determine whether additional signaling molecules/pathways are critically involved in IL-5-mediated eosinophil survival. METHODS: Eosinophil survival and apoptosis were measured in the presence and absence of IL-5 and defined pharmacologic inhibitors in vitro. The specific role of the serine/threonine kinase proviral integration site for Moloney murine leukemia virus (Pim) 1 was tested by using HIV-transactivator of transcription fusion proteins containing wild-type Pim-1 or a dominant-negative form of Pim-1. The expression of Pim-1 in eosinophils was analyzed by means of immunoblotting and immunofluorescence. RESULTS: Although pharmacologic inhibition of phosphatidylinositol-3 kinase (PI3K) by LY294002, wortmannin, or the selective PI3K p110delta isoform inhibitor IC87114 was successful in each case, only LY294002 blocked increased IL-5-mediated eosinophil survival. This suggested that LY294002 inhibited another kinase that is critically involved in this process in addition to PI3K. Indeed, Pim-1 was rapidly and strongly expressed in eosinophils after IL-5 stimulation in vitro and readily detected in eosinophils under inflammatory conditions in vivo. Moreover, by using specific protein transfer, we identified Pim-1 as a critical element in IL-5-mediated antiapoptotic signaling in eosinophils. CONCLUSIONS: Pim-1, but not PI3K, plays a major role in IL-5-mediated antiapoptotic signaling in eosinophils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context and Objective: Main features of the autosomal dominant form of GH deficiency (IGHD II) include markedly reduced secretion of GH combined with low concentrations of IGF-I leading to short stature. Design, Setting, and Patients: A female patient presented with short stature (height -6.0 sd score) and a delayed bone age of 2 yr at the chronological age of 5 yr. Later, at the age of 9 yr, GHD was confirmed by standard GH provocation test, which revealed subnormal concentrations of GH and a very low IGF-I. Genetic analysis of the GH-1 gene revealed the presence of a heterozygous R178H mutation. Interventions and Results: AtT-20 cells coexpressing both wt-GH and GH-R178H showed a reduced GH secretion after forskolin stimulation compared with the cells expressing only wt-GH, supporting the diagnosis of IGHD II. Because reduced GH concentrations found in the circulation of our untreated patient could not totally explain her severe short stature, functional characterization of the GH-R178H performed by studies of GH receptor binding and activation of the Janus kinase-2/signal transducer and activator of transcription-5 pathway revealed a reduced binding affinity of GH-R178H for GH receptor and signaling compared with the wt-GH. Conclusion: This is the first report of a patient suffering from short stature caused by a GH-1 gene alteration affecting not only GH secretion (IGHD II) but also GH binding and signaling, highlighting the necessity of functional analysis of any GH variant, even in the alleged situation of IGHD II.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most powerful regulators of cardiovascular function is catecholamine-stimulated adrenergic receptor (AR) signaling. The failing heart is characterized by desensitization and impaired beta-AR responsiveness as a result of upregulated G protein-coupled receptor kinase-2 (GRK2) present in injured myocardium. Deterioration of cardiac function is progressively enhanced by chronic adrenergic over-stimulation due to increased levels of circulating catecholamines. Increased GRK2 activity contributes to this pathological cycle of over-stimulation but lowered responsiveness. Over the past two decades the GRK2 inhibitory peptide betaARKct has been identified as a potential therapy that is able to break this vicious cycle of self-perpetuating deregulation of the beta-AR system and subsequent myocardial malfunction, thus halting development of cardiac failure. The betaARKct has been shown to interfere with GRK2 binding to the betagamma subunits of the heterotrimeric G protein, therefore inhibiting its recruitment to the plasma membrane that normally leads to phosphorylation and internalization of the receptor. In this article we summarize the current data on the therapeutic effects of betaARKct in cardiovascular disease and report on recent and ongoing studies that may pave the way for this peptide towards therapeutic application in heart failure and other states of cardiovascular disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated here the effects of S2T1-6OTD, a novel telomestatin derivative that is synthesized to target G-quadruplex-forming DNA sequences, on a representative panel of human medulloblastoma (MB) and atypical teratoid/rhabdoid (AT/RT) childhood brain cancer cell lines. S2T1-6OTD proved to be a potent c-Myc inhibitor through its high-affinity physical interaction with the G-quadruplex structure in the c-Myc promoter. Treatment with S2T1-6OTD reduced the mRNA and protein expressions of c-Myc and hTERT, which is transcriptionally regulated by c-Myc, and decreased the activities of both genes. In remarkable contrast to control cells, short-term (72-hour) treatment with S2T1-6OTD resulted in a dose- and time-dependent antiproliferative effect in all MB and AT/RT brain tumor cell lines tested (IC(50), 0.25-0.39 micromol/L). Under conditions where inhibition of both proliferation and c-Myc activity was observed, S2T1-6OTD treatment decreased the protein expression of the cell cycle activator cyclin-dependent kinase 2 and induced cell cycle arrest. Long-term treatment (5 weeks) with nontoxic concentrations of S2T1-6OTD resulted in a time-dependent (mainly c-Myc-dependent) telomere shortening. This was accompanied by cell growth arrest starting on day 28 followed by cell senescence and induction of apoptosis on day 35 in all of the five cell lines investigated. On in vivo animal testing, S2T1-6OTD may well represent a novel therapeutic strategy for childhood brain tumors.