84 resultados para cerebellar ataxia
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.
Resumo:
Dandy-Walker-like malformation (DWLM) is the result of aberrant brain development and mainly characterized by cerebellar hypoplasia. DWLM affected dogs display a non-progressive cerebellar ataxia. Several DWLM cases were recently observed in the Eurasier dog breed, which strongly suggested a monogenic autosomal recessive inheritance in this breed. We performed a genome-wide association study (GWAS) with 9 cases and 11 controls and found the best association of DWLM with markers on chromosome 1. Subsequent homozygosity mapping confirmed that all 9 cases were homozygous for a shared haplotype in this region, which delineated a critical interval of 3.35 Mb. We sequenced the genome of an affected Eurasier and compared it with the Boxer reference genome and 47 control genomes of dogs from other breeds. This analysis revealed 4 private non-synonymous variants in the critical interval of the affected Eurasier. We genotyped these variants in additional dogs and found perfect association for only one of these variants, a single base deletion in the VLDLR gene encoding the very low density lipoprotein receptor. This variant, VLDLR:c.1713delC is predicted to cause a frameshift and premature stop codon (p.W572Gfs*10). Variants in the VLDLR gene have been shown to cause congenital cerebellar ataxia and mental retardation in human patients and Vldlr knockout mice also display an ataxia phenotype. Our combined genetic data together with the functional knowledge on the VLDLR gene from other species thus strongly suggest that VLDLR:c.1713delC is indeed causing DWLM in Eurasier dogs.
Resumo:
We report on clinicopathological findings in two cases of rosette-forming glioneuronal tumor of the fourth ventricle (RGNT) occurring in females aged 16 years (Case 1) and 30 years (Case 2). Symptoms included vertigo, nausea, cerebellar ataxia, as well as headaches, and had been present for 4-months and 1 week, respectively. Magnetic resonance imaging (MRI) indicated a cerebellar-based tumor of 1.8cm (Case 1) and 5cm (Case 2) diameter each, bulging into the fourth ventricle. Case 2 involved a cyst-mural-nodule configuration. In both instances, the solid component appeared isointense on T(1) sequences, hyperintense in the T(2) mode, and enhanced moderately. Gross total resection was achieved via suboccipital craniotomy. However, functional recovery was disappointing in Case 1. On microscopy, both tumors comprised an admixture of low-grade astrocytoma interspersed with circular aggregates of synaptophysin-expressing round cells harboring oligodendrocyte-like nuclei. The astrocytic moiety in Case 1 was nondescript, and overtly pilocytic in Case 2. The architecture of neuronal elements variously consisted of neurocytic rosettes, of pseudorosettes centered on a capillary core, as well as of concentric ribbons along irregular lumina. Gangliocytic maturation, especially "floating neurons", or a corresponding immunoreactivity for neurofilament protein was absent. Neither of these populations exhibited atypia, mitotic activity, or a significant labeling for MIB-1. Cerebellar parenchyma included in the surgical specimen did not reveal any preexisting malformative anomaly. Despite sharing some overlapping histologic traits with dysembryoplastic neuroepithelial tumor (DNT), the presentation of RGNT with respect to both patient age and location is consistent enough for this lesion to be singled out as an autonomous entity.
Resumo:
Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.
Resumo:
Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where potassium channels limit the depolarizing afterpotential and the effects of depolarizing currents. Axonal excitability studies were performed on patients with genetically confirmed episodic ataxia type 1 to characterize the effects of K(v)1.1 dysfunction on motor axons in vivo. The median nerve was stimulated at the wrist and compound muscle action potentials were recorded from abductor pollicis brevis. Threshold tracking techniques were used to record strength-duration time constant, threshold electrotonus, current/threshold relationship and the recovery cycle. Recordings from 20 patients from eight kindreds with different KCNA1 point mutations were compared with those from 30 normal controls. All 20 patients had a history of episodic ataxia and 19 had neuromyotonia. All patients had similar, distinctive abnormalities: superexcitability was on average 100% higher in the patients than in controls (P < 0.00001) and, in threshold electrotonus, the increase in excitability due to a depolarizing current (20% of threshold) was 31% higher (P < 0.00001). Using these two parameters, the patients with episodic ataxia type 1 and controls could be clearly separated into two non-overlapping groups. Differences between the different KCNA1 mutations were not statistically significant. Studies of nerve excitability can identify K(v)1.1 dysfunction in patients with episodic ataxia type 1. The simple 15 min test may be useful in diagnosis, since it can differentiate patients with episodic ataxia type 1 from normal controls with high sensitivity and specificity.
Resumo:
Over the last decade, increasing evidence of cognitive functions of the cerebellum during development and learning processes could be ascertained. Posterior fossa malformations such as cerebellar hypoplasia or Joubert syndrome are known to be related to developmental problems in a marked to moderate extent. More detailed analyses reveal special deficits in attention, processing speed, visuospatial functions, and language. A study about Dandy Walker syndrome states a relationship of abnormalities in vermis lobulation with developmental problems. Further lobulation or volume abnormalities of the cerebellum and/or vermis can be detected in disorders as fragile X syndrome, Downs's syndrome, William's syndrome, and autism. Neuropsychological studies reveal a relation of dyslexia and attention deficit disorder with cerebellar functions. These functional studies are supported by structural abnormalities in neuroimaging in these disorders. Acquired cerebellar or vermis atrophy was found in groups of children with developmental problems such as prenatal alcohol exposure or extreme prematurity. Also, focal lesions during childhood or adolescence such as cerebellar tumor or stroke are related with neuropsychological abnormalities, which are most pronounced in visuospatial, language, and memory functions. In addition, cerebellar atrophy was shown to be a bad prognostic factor considering cognitive outcome in children after brain trauma and leukemia. In ataxia teleangiectasia, a neurodegenerative disorder affecting primarily the cerebellar cortex, a reduced verbal intelligence quotient and problems of judgment of duration are a hint of the importance of the cerebellum in cognition. In conclusion, the cerebellum seems to play an important role in many higher cognitive functions, especially in learning. There is a suggestion that the earlier the incorrect influence, the more pronounced the problems.
Resumo:
The aim of the present study was to assess cognitive, affective, and motor long-term sequelae after acquired focal pediatric cerebellar lesions.
Resumo:
A 37-year-old man with advanced Friedreich's ataxia was referred to our emergency department with acute exacerbated abdominal pain of unclear aetiology. Laboratory tests showed slightly increased inflammatory parameters, elevated troponin and B-type natriuretic peptide, as well as minimal proteinuria. Transthoracic echocardiography revealed a pre-existing dilated cardiomyopathy. Abdominal sonography showed no pathological alterations. Owing to persistent pain under analgesia, a contrast-enhanced CT-abdomen was performed, which revealed a non-homogeneous perfusion deficit of the right kidney, although neither abdominal vascular alteration, cardiac thrombus, deep vein thrombosis nor a patent foramen ovale could be detected. Taking all clinical and radiological results into consideration, the current incident was diagnosed as a thromboembolic kidney infarction. As a consequence, lifelong oral anticoagulation was initiated.
Resumo:
Neurodegenerative diseases affect the cerebellum of numerous dog breeds. Although subjective, magnetic resonance (MR) imaging has been used to detect cerebellar atrophy in these diseases, but there are few data available on the normal size range of the cerebellum relative to other brain regions. The purpose of this study was to determine whether the size of the cerebellum maintains a consistent ratio with other brain regions in different ages and breeds of normal dogs and to define a measurement that can be used to identify cerebellar atrophy on MR images. Images from 52 normal and 13 dogs with cerebellar degenerative diseases were obtained. Volume and mid-sagittal cross-sectional area of the forebrain, brainstem, and cerebellum were calculated for each normal dog and compared between different breeds and ages as absolute and relative values. The ratio of the cerebellum to total brain and of the brainstem to cerebellum mid-sagittal cross-sectional area was compared between normal and affected dogs and the sensitivity and specificity of these ratios at distinguishing normal from affected dogs was calculated. The percentage of the brain occupied by the cerebellum in diverse dog breeds between 1 and 5 years of age was not significantly different, and cerebellar size did not change with increasing age. Using a cut off of 89%, the ratio between the brainstem and cerebellum mid-sagittal cross-sectional area could be used successfully to differentiate affected from unaffected dogs with a sensitivity and specificity of 100%, making this ratio an effective tool for identifying cerebellar atrophy on MR images.
Resumo:
The cause of porcine congenital progressive ataxia and spastic paresis (CPA) is unknown. This severe neuropathy manifests shortly after birth and is lethal. The disease is inherited as a single autosomal recessive allele, designated cpa. In a previous study, we demonstrated close linkage of cpa to microsatellite SW902 on porcine chromosome 3 (SSC3), which corresponds syntenically to human chromosome 2. This latter chromosome contains ion channel genes (Ca(2+), K(+) and Na(+)), a cholinergic receptor gene and the spastin (SPG4) gene, which cause human epilepsy and ataxia when mutated. We mapped porcine CACNB4, KCNJ3, SCN2A and CHRNA1 to SSC15 and SPG4 to SSC3 with the INRA-Minnesota porcine radiation hybrid panel (IMpRH) and we sequenced the entire open reading frames of CACNB4 and SPG4 without finding any differences between healthy and affected piglets. An anti-epileptic drug treatment with ethosuximide did not change the severity of the disease, and pigs with CPA did not exhibit the corticospinal tract axonal degeneration found in humans suffering from hereditary spastic paraplegia, which is associated with mutations in SPG4. For all these reasons, the hypothesis that CACNB4, CHRNA1, KCNJ3, SCN2A or SPG4 are identical with the CPA gene was rejected.
Resumo:
Three Bavarian mountain dogs aged between 18 and 20 months, not related to each other, were presented with chronic signs of cerebellar dysfunction. On sagittal T2-weighted magnetic resonance imaging brain images, the tentative diagnosis of cerebellar hypoplasia was established based on an enlarged cerebrospinal fluid space around the cerebellum and an increased cerebrospinal fluid signal between the folia. Post-mortem examination was performed in one dog and did show an overall reduction of cerebellar size. On histopathologic examination, a selective loss of cerebellar granule cells with sparing of Purkinje cells was evident. Therefore, the Bavarian mountain dog is a breed where cerebellar cortical degeneration caused by the rather exceptional selective granule cell loss can be seen as cause of chronic, slowly progressive cerebellar dysfunction starting at an age of several months.
Resumo:
In contrast to malformations, cerebellar disruptions have attracted little interest in the literature. We draw attention for the first time to the hypothesis that cerebellar clefts are residual changes following a prenatal cerebellar insult, and represent disruptions. We reviewed the clinical records and MR findings of six patients with a cerebellar cleft, two of whom also had prenatal MRI at 24 weeks of gestation. The clefts were located in the left cerebellar hemisphere in five cases, in the right in one patient. Other typical findings included disorderly alignment of the cerebellar folia and fissures, irregular gray/white matter junction, and abnormal arborization of the white matter in all patients. The cerebellar cleft extended into the fourth ventricle in three cases, and in two children cystic cortical lesions were seen. Supratentorial schizencephaly was found in two patients. In two patients there was a documented fetal cerebellar hemorrhage at 24 weeks of gestation. We conclude that cerebellar clefts are residual changes resulting from a prenatal cerebellar insult and consequently represent disruptions rather than primary malformations. The supratentorial findings are also in agreement with an acquired lesion. The outcome in these children was variable, mainly depending of the presence of supratentorial lesions.