106 resultados para central venous pressure
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE Blood loss and blood substitution are associated with higher morbidity after major abdominal surgery. During major liver resection, low local venous pressure, has been shown to reduce blood loss. Ambiguity persists concerning the impact of local venous pressure on blood loss during open radical cystectomy. We aimed to determine the association between intraoperative blood loss and pelvic venous pressure (PVP) and determine factors affecting PVP. MATERIAL AND METHODS In the frame of a single-center, double-blind, randomized trial, PVP was measured in 82 patients from a norepinephrine/low-volume group and in 81 from a control group with liberal hydration. For this secondary analysis, patients from each arm were stratified into subgroups with PVP <5 mmHg or ≥5 mmHg measured after cystectomy (optimal cut-off value for discrimination of patients with relevant blood loss according to the Youden's index). RESULTS Median blood loss was 800 ml [range: 300-1600] in 55/163 patients (34%) with PVP <5 mmHg and 1200 ml [400-3000] in 108/163 patients (66%) with PVP ≥5 mmHg; (P<0.0001). A PVP <5 mmHg was measured in 42/82 patients (51%) in the norepinephrine/low-volume group and 13/81 (16%) in the control group (P<0.0001). PVP dropped significantly after removal of abdominal packing and abdominal lifting in both groups at all time points (at begin and end of pelvic lymph node dissection, end of cystectomy) (P<0.0001). No correlation between PVP and central venous pressure could be detected. CONCLUSIONS Blood loss was significantly reduced in patients with low PVP. Factors affecting PVP were fluid management and abdominal packing.
Resumo:
Objective. The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Methods. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. Results. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7mmHgand-0.9+/- 0.5mmHg, respectively), withameanpulsepressureof3.4mmHg.ThedifferencebetweenthemeanCVPandCVPatend-diastoleduringexpirationwas0.58+/- 0.81 mmHg. Conclusions. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.
Resumo:
PURPOSE: To evaluate a widely used nontunneled triple-lumen central venous catheter in order to determine whether the largest of the three lumina (16 gauge) can tolerate high flow rates, such as those required for computed tomographic angiography. MATERIALS AND METHODS: Forty-two catheters were tested in vitro, including 10 new and 32 used catheters (median indwelling time, 5 days). Injection pressures were continuously monitored at the site of the 16-gauge central venous catheter hub. Catheters were injected with 300 and 370 mg of iodine per milliliter of iopamidol by using a mechanical injector at increasing flow rates until the catheter failed. The infusion rate, hub pressure, and location were documented for each failure event. The catheter pressures generated during hand injection by five operators were also analyzed. Mean flow rates and pressures at failure were compared by means of two-tailed Student t test, with differences considered significant at P < .05. RESULTS: Injections of iopamidol with 370 mg of iodine per milliliter generate more pressure than injections of iopamidol with 300 mg of iodine per milliliter at the same injection rate. All catheters failed in the tubing external to the patient. The lowest flow rate at which catheter failure occurred was 9 mL/sec. The lowest hub pressure at failure was 262 pounds per square inch gauge (psig) for new and 213 psig for used catheters. Hand injection of iopamidol with 300 mg of iodine per milliliter generated peak hub pressures ranging from 35 to 72 psig, corresponding to flow rates ranging from 2.5 to 5.0 mL/sec. CONCLUSION: Indwelling use has an effect on catheter material property, but even for used catheters there is a substantial safety margin for power injection with the particular triple-lumen central venous catheter tested in this study, as the manufacturer's recommendation for maximum pressure is 15 psig.
Resumo:
To demonstrate that abdominal pressure impacts venous flow and pressure characteristics.
Resumo:
AIMS: Myocardial blood flow (MBF) is the gold standard to assess myocardial blood supply and, as recently shown, can be obtained by myocardial contrast echocardiography (MCE). The aims of this human study are (i) to test whether measurements of collateral-derived MBF by MCE are feasible during elective angioplasty and (ii) to validate the concept of pressure-derived collateral-flow assessment. METHODS AND RESULTS: Thirty patients with stable coronary artery disease underwent MCE of the collateral-receiving territory during and after angioplasty of 37 stenoses. MCE perfusion analysis was successful in 32 cases. MBF during and after angioplasty varied between 0.060-0.876 mL min(-1) g(-1) (0.304+/-0.196 mL min(-1) g(-1)) and 0.676-1.773 mL min(-1) g(-1) (1.207+/-0.327 mL min(-1) g(-1)), respectively. Collateral-perfusion index (CPI) is defined as the rate of MBF during and after angioplasty varied between 0.05 and 0.67 (0.26+/-0.15). During angioplasty, simultaneous measurements of mean aortic pressure, coronary wedge pressure, and central venous pressure determined the pressure-derived collateral-flow index (CFI(p)), which varied between 0.04 and 0.61 (0.23+/-0.14). Linear-regression analysis demonstrated an excellent agreement between CFI(p) and CPI (y=0.88 x +0.01; r(2)=0.92; P<0.0001). CONCLUSION: Collateral-derived MBF measurements by MCE during angioplasty are feasible and proved that the pressure-derived CFI exactly reflects collateral relative to normal myocardial perfusion in humans.
Resumo:
We assessed changes in intravascular volume monitored by difference in pulse pressure (dPP%) after stepwise hemorrhage in an experimental pig model. Six pigs (23-25 kg) were anesthetized (isoflurane 1.5 vol%) and mechanically ventilated to keep end-tidal CO2 (etCO2) at 35 mmHg. A PA-catheter and an arterial catheter were placed via femoral access. During and after surgery, animals received lactated Ringer's solution as long as they were considered volume responders (dPP>13%). Then animals were allowed to stabilize from the induction of anesthesia and insertion of catheters for 30 min. After stabilization, baseline measurements were taken. Five percent of blood volume was withdrawn, followed by another 5%, and then in 10%-increments until death from exsanguination occurred. After withdrawal of 5% of blood volume, all pigs were considered volume responders (dPP>13%); dPP rose significantly from 6.1+/-3.3% to 19.4+/-4.2%. The regression analysis of stepwise hemorrhage revealed a linear relation between blood loss (hemorrhage in %) and dPP (y=0.99*x+14; R2=0.7764; P<.0001). In addition, dPP was the only parameter that changed significantly between baseline and a blood loss of 5% (P<0.01), whereas cardiac output, stroke volume, heart rate, MAP, central venous pressure, pulmonary artery occlusion pressure, and systemic vascular resistance, respectively, remained unchanged. We conclude that in an experimental hypovolemic pig model, dPP correlates well with blood loss.
Resumo:
Introduction Low central venous oxygen saturation (ScvO2) has been associated with increased risk of postoperative complications in high-risk surgery. Whether this association is centre-specific or more generalisable is not known. The aim of this study was to assess the association between peri- and postoperative ScvO2 and outcome in high-risk surgical patients in a multicentre setting. Methods Three large European university hospitals (two in Finland, one in Switzerland) participated. In 60 patients with intra-abdominal surgery lasting more than 90 minutes, the presence of at least two of Shoemaker's criteria, and ASA (American Society of Anesthesiologists) class greater than 2, ScvO2 was determined preoperatively and at two hour intervals during the operation until 12 hours postoperatively. Hospital length of stay (LOS) mortality, and predefined postoperative complications were recorded. Results The age of the patients was 72 ± 10 years (mean ± standard deviation), and simplified acute physiology score (SAPS II) was 32 ± 12. Hospital LOS was 10.5 (8 to 14) days, and 28-day hospital mortality was 10.0%. Preoperative ScvO2 decreased from 77% ± 10% to 70% ± 11% (p < 0.001) immediately after surgery and remained unchanged 12 hours later. A total of 67 postoperative complications were recorded in 32 patients. After multivariate analysis, mean ScvO2 value (odds ratio [OR] 1.23 [95% confidence interval (CI) 1.01 to 1.50], p = 0.037), hospital LOS (OR 0.75 [95% CI 0.59 to 0.94], p = 0.012), and SAPS II (OR 0.90 [95% CI 0.82 to 0.99], p = 0.029) were independently associated with postoperative complications. The optimal value of mean ScvO2 to discriminate between patients who did or did not develop complications was 73% (sensitivity 72%, specificity 61%). Conclusion Low ScvO2 perioperatively is related to increased risk of postoperative complications in high-risk surgery. This warrants trials with goal-directed therapy using ScvO2 as a target in high-risk surgery patients.
Resumo:
INTRODUCTION: It has been shown that early central venous oxygen saturation (ScvO2)-guided optimization of hemodynamics can improve outcome in septic patients. The early ScvO2 profile of other patient groups is unknown. The aim of this study was to characterize unplanned admissions in a multidisciplinary intensive care unit (ICU) with respect to ScvO2 and outcome. METHODS: Ninety-eight consecutive unplanned admissions to a multidisciplinary ICU (median age 63 [range 19 to 83] years, median Simplified Acute Physiology Score [SAPS II] 43 [range 11 to 92]) with a clinical indication for a central venous catheter were included in the study. ScvO2 was assessed at ICU arrival and six hours later but was not used to guide treatment. Length of stay in ICU (LOSICU) and in hospital (LOShospital) and 28-day mortality were recorded. RESULTS: ScvO2 was 70% +/- 12% (mean +/- standard deviation) at admission and 71% +/- 10% six hours later (p = 0.484). Overall 28-day mortality was 18%, LOSICU was 3 (1 to 28) days, and LOShospital was 19 (1 to 28) days. Patients with an ScvO2 of less than 60% at admission had higher mortality than patients with an ScvO2 of more than 60% (29% versus 17%, p < 0.05). Changes in ScvO2 during the first six hours were not predictive of LOSICU, LOShospital, or mortality. CONCLUSION: Low ScvO2 in unplanned admissions and high SAPS II are associated with increased mortality. Standard ICU treatment increased ScvO2 in patients with a low admission ScvO2, but the increase was not associated with LOSICU or LOShospital.
Resumo:
OBJECTIVE: Compare changes in P-wave amplitude of the intra-atrial electrocardiogram (ECG) and its corresponding transesophageal echocardiography (TEE)-controlled position to verify the exact localization of a central venous catheter (CVC) tip. DESIGN: A prospective study. SETTING: University, single-institutional setting. PARTICIPANTS: Two hundred patients undergoing elective cardiac surgery. INTERVENTIONS: CVC placement via the right internal jugular vein with ECG control using the guidewire technique and TEE control in 4 different phases: phase 1: CVC placement with normalized P wave and measurement of distance from the crista terminalis to the CVC tip; phase 2: TEE-controlled placement of the CVC tip; parallel to the superior vena cava (SVC) and measurements of P-wave amplitude; phase 3: influence of head positioning on CVC migration; and phase 4: evaluation of positioning of the CVC postoperatively using a chest x-ray. MEASUREMENTS AND MAIN RESULTS: The CVC tip could only be visualized in 67 patients on TEE with a normalized P wave. In 198 patients with the CVC parallel to the SVC wall controlled by TEE (phase 2), an elevated P wave was observed. Different head movements led to no significant migration of the CVC (phase 3). On a postoperative chest-x-ray, the CVC position was correct in 87.6% (phase 4). CONCLUSION: The study suggests that the position of the CVC tip is located parallel to the SVC and 1.5 cm above the crista terminalis if the P wave starts to decrease during withdrawal of the catheter. The authors recommend that ECG control as per their study should be routinely used for placement of central venous catheters via the right internal jugular vein.
Resumo:
OBJECTIVE: To evaluate the association between arterial blood pressure (ABP) during the first 24 h and mortality in sepsis. DESIGN: Retrospective cohort study. SETTING: Multidisciplinary intensive care unit (ICU). PATIENTS AND PARTICIPANTS: A total of 274 septic patients. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: Hemodynamic, and laboratory parameters were extracted from a PDMS database. The hourly time integral of ABP drops below clinically relevant systolic arterial pressure (SAP), mean arterial pressure (MAP), and mean perfusion pressure (MPP = MAP - central venous pressure) levels was calculated for the first 24 h after ICU admission and compared with 28-day-mortality. Binary and linear regression models (adjusted for SAPS II as a measure of disease severity), and a receiver operating characteristic (ROC) analysis were applied. The areas under the ROC curve were largest for the hourly time integrals of ABP drops below MAP 60 mmHg (0.779 vs. 0.764 for ABP drops below MAP 55 mmHg; P < or = 0.01) and MPP 45 mmHg. No association between the hourly time integrals of ABP drops below certain SAP levels and mortality was detected. One or more episodes of MAP < 60 mmHg increased the risk of death by 2.96 (CI 95%, 1.06-10.36, P = 0.04). The area under the ROC curve to predict the need for renal replacement therapy was highest for the hourly time integral of ABP drops below MAP 75 mmHg. CONCLUSIONS: A MAP level > or = 60 mmHg may be as safe as higher MAP levels during the first 24 h of ICU therapy in septic patients. A higher MAP may be required to maintain kidney function.
Resumo:
AIMS The aim of our study in patients with coronary artery disease (CAD) and present, or absent, myocardial ischaemia during coronary occlusion was to test whether (i) left ventricular (LV) filling pressure is influenced by the collateral circulation and, on the other hand, that (ii) its resistance to flow is directly associated with LV filling pressure. METHODS AND RESULTS In 50 patients with CAD, the following parameters were obtained before and during a 60 s balloon occlusion: LV, aortic (Pao) and coronary pressure (Poccl), flow velocity (Voccl), central venous pressure (CVP), and coronary flow velocity after coronary angioplasty (V(Ø-occl)). The following variables were determined and analysed at 10 s intervals during occlusion, and at 60 s of occlusion: LV end-diastolic pressure (LVEDP), velocity-derived (CFIv) and pressure-derived collateral flow index (CFIp), coronary collateral (Rcoll), and peripheral resistance index to flow (Rperiph). Patients with ECG signs of ischaemia during coronary occlusion (insufficient collaterals, n = 33) had higher values of LVEDP over the entire course of occlusion than those without ECG signs of ischaemia during occlusion (sufficient collaterals, n = 17). Despite no ischaemia in the latter, there was an increase in LVEDP from 20 to 60 s of occlusion. In patients with insufficient collaterals, CFIv decreased and CFIp increased during occlusion. Beyond an occlusive LVEDP > 27 mmHg, Rcoll and Rperiph increased as a function of LVEDP. CONCLUSION Recruitable collaterals are reciprocally tied to LV filling pressure during occlusion. If poorly developed, they affect it via myocardial ischaemia; if well grown, LV filling pressure still increases gradually during occlusion despite the absence of ischaemia indicating transmission of collateral perfusion pressure to the LV. With low, but not high, collateral flow, resistance to collateral as well as coronary peripheral flow is related to LV filling pressure in the high range.
Resumo:
When used in veterinary medicine, central venous catheters are typically inserted through the external jugular vein, with their caudal extension within the cranial vena cava. Radiographic or fluoroscopic guidance is recommended to assist in correctly placing these catheters. This article provides radiologic examples of common central venous catheter malpositions and complications.
Resumo:
Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. In this viewpoint article, we propose a three-step approach of resuscitation endpoints in shock of all origins. This approach targets only a minimum individual and context-sensitive mean arterial blood pressure (for example, 45 to 50 mm Hg) to preserve heart and brain perfusion. Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension ('permissive hypotension'). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints.
Resumo:
BACKGROUND Liver regeneration is of crucial importance for patients undergoing living liver transplantations or extended liver resections and can be associated with elevated portal venous pressure, impaired hepatic regeneration, and postoperative morbidity. The aim of this study was to assess whether reduction of portal venous pressure by terlipressin improves postoperative liver regeneration in normal and steatotic livers after partial hepatectomy in a rodent model. METHODS Portal venous pressure was assessed after minor (30%), standard (60%), or extended (80%) partial hepatectomy (PH) in mice with and without liver steatosis. Liver regeneration was assessed by BrdU incorporation and Ki-67 immunostaining. RESULTS Portal venous pressure was significantly elevated post-PH in mice with normal and steatotic livers compared to sham-operated mice. Reduction of elevated portal pressure after 80% PH by terlipressin was associated with an increase of hepatocellular proliferation. In steatotic livers, animals treated with terlipressin had an increase in liver regeneration after 30% PH and increased survival after 60% PH. Mechanistically, terlipressin alleviated IL-6 mRNA expression following PH and down-regulated p21 and GADD45 mRNA suggesting a reduction of cell cycle inhibition and cellular stress. CONCLUSIONS Reduction of elevated portal pressure post-PH by the use of terlipressin improves liver regeneration after PH in lean and steatotic mouse livers.
Resumo:
The prognostic relevance of quantitative an intracoronary occlusive electrocardiographic (ECG) ST-segment shift and its determinants have not been investigated in humans. In 765 patients with chronic stable coronary artery disease, the following simultaneous quantitative measurements were obtained during a 1-minute coronary balloon occlusion: intracoronary ECG ST-segment shift (recorded by angioplasty guidewire), mean aortic pressure, mean distal coronary pressure, and mean central venous pressure (CVP). Collateral flow index (CFI) was calculated as follows: (mean distal coronary pressure minus CVP)/(mean aortic pressure minus CVP). During an average follow-up duration of 50 ± 34 months, the cumulative mortality rate from all causes was significantly lower in the group with an ST-segment shift <0.1 mV (n = 89) than in the group with an ST-segment shift ≥0.1 mV (n = 676, p = 0.0211). Factors independently related to intracoronary occlusive ECG ST-segment shift <0.1 mV (r(2) = 0.189, p <0.0001) were high CFI (p <0.0001), intracoronary occlusive RR interval (p = 0.0467), right coronary artery as the ischemic region (p <0.0001), and absence of arterial hypertension (p = 0.0132). "High" CFI according to receiver operating characteristics analysis was ≥0.217 (area under receiver operating characteristics curve 0.647, p <0.0001). In conclusion, absence of ECG ST-segment shift during brief coronary occlusion in patients with chronic coronary artery disease conveys a decreased mortality and is directly influenced by a well-developed collateral supply to the right versus left coronary ischemic region and by the absence of systemic hypertension in a patient's history.