7 resultados para cellular assays
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Microfluidic systems have become competitive tools in the invitro modelling of diseases and promising alternatives to animal studies. They allow obtaining more invivo like conditions for cellular assays. Research in idiopathic pulmonary fibrosis could benefit from this novel methodological approach to understand the pathophysiology of the disease & develop efficient therapies. The use of hepatocyte growth factor (HGF) for alveolar reepithelisation is a promising approach. In this study, we show a new microfluidic system to analyse the effects of HGF on injured alveolar epithelial cells. Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells (10,000 cells) were seeded and studied in these microfluidic systems with media perfusion (1μl/30min). Injury tests were made on the cells by the perfusion with media containing H2O2 or bleomycin. The degree of injury was then assessed by a metabolic and an apoptotic assays. Wound assays were also performed with a central laminar flow of trypsin. Monitoring of wound closure with HGF vs control media was assessed. The alveolar A549 epithelial cells grew and proliferated in the microfluidic system. In the wound closure assay, the degree of wound closure after 5 hours was (53.3±1.3%) with HGF compared to (9.8±2.4%) without HGF (P <0.001). We present a novel microfluidic model that allows culture, injury and wounding of A549 epithelial cells and represents the first step towards the development of an invitro reconstitution of the alveolar-capillary interface. We were also able to confirm that HGF increased alveolar epithelial repair in this system.
Resumo:
Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades.
Resumo:
Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
Resumo:
Renewed interest in the measurement of cellular K(+) effluxes has been prompted by the observation that potassium plays an active and important role in numerous key cellular events, in particular cell necrosis and apoptosis. Although necrosis and apoptosis follow different pathways, both induce intracellular potassium effluxes. Here, we report the use of potassium-selective microelectrodes located in a microfluidic platform for cell culture to monitor and quantify such effluxes in real time. Using this platform, we observed and measured the early signs of cell lysis induced by a modification of the extracellular osmolarity. Furthermore, we were able to quantify the number of dying cells by evaluating the extracellular potassium concentration. A comparison between the potentiometric measurement with a fluorescent live-dead assay performed under similar conditions revealed the delay between potassium effluxes and cell necrosis. These results suggest that such platforms may be exploited for applications, such as cytotoxicological screening assays or tumor cell proliferation assays, by using extracellular K(+) as cell death marker.
Resumo:
The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells (HSC). Inhibition of receptor tyrosine kinase (RTK) signaling showed promise in the treatment of hepatocellular carcinoma. However, there is a lack of knowledge about the effects of RTK inhibitors on the tumor supportive cells. We performed in vitro experiments to study whether Sunitinib, a platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) RTKs' inhibitor, could block both activated HSC functions and angiogenesis and thus prevent the progression of cirrhotic liver to hepatocellular carcinoma. In immortalized human activated HSC LX-2, treatment with Sunitinib 100 nM blocked collagen synthesis by 47%, as assessed by Sirius Red staining, attenuated HSC contraction by 65%, and reduced cell migration by 28% as evaluated using a Boyden's chamber, without affecting cell viability, measured by Trypan blue staining, and apoptosis, measured by propidium iodide (PI) incorporation assay. Our data revealed that Sunitinib treatment blocked the transdifferentiation of primary human HSC (hHSC) to activated myofibroblast-like cells by 65% without affecting hHSC apoptosis and migration. In in vitro angiogenic assays, Sunitinib 100 nM reduced endothelial cells (EC) ring formation by 46% and tube formation by 68%, and decreased vascular sprouting in aorta ring assay and angiogenesis in vascular bed of chick embryo. In conclusion, the present study demonstrates that the RTK inhibitor Sunitinib blocks the activation of HSC and angiogenesis suggesting its potential as a drug candidate in pathological conditions like liver fibrosis and hepatocellular carcinoma.
Resumo:
Cancer is responsible for millions of deaths worldwide and the variability in disease patterns calls for patient-specific treatment. Therefore, personalized treatment is expected to become a daily routine in prospective clinical tests. In addition to genetic mutation analysis, predictive chemosensitive assays using patient's cells will be carried out as a decision making tool. However, prior to their widespread application in clinics, several challenges linked to the establishment of such assays need to be addressed. To best predict the drug response in a patient, the cellular environment needs to resemble that of the tumor. Furthermore, the formation of homogeneous replicates from a scarce amount of patient's cells is essential to compare the responses under various conditions (compound and concentration). Here, we present a microfluidic device for homogeneous spheroid formation in eight replicates in a perfused microenvironment. Spheroid replicates from either a cell line or primary cells from adenocarcinoma patients were successfully created. To further mimic the tumor microenvironment, spheroid co-culture of primary lung cancer epithelial cells and primary pericytes were tested. A higher chemoresistance in primary co-culture spheroids compared to primary monoculture spheroids was found when both were constantly perfused with cisplatin. This result is thought to be due to the barrier created by the pericytes around the tumor spheroids. Thus, this device can be used for additional chemosensitivity assays (e.g. sequential treatment) of patient material to further approach the personalized oncology field.
Resumo:
The human DMTF1 (DMP1) transcription factor, a DNA binding protein that interacts with cyclin D, is a positive regulator of the p14ARF (ARF) tumor suppressor. Our earlier studies have shown that three differentially spliced human DMP1 mRNAs, α, β and γ, arise from the human gene. We now show that DMP1α, β and γ isoforms differentially regulate ARF expression and promote distinct cellular functions. In contrast to DMP1α, DMP1β and γ did not activate the ARF promoter, whereas only β resulted in a dose-dependent inhibition of DMP1α-induced transactivation of the ARF promoter. Ectopic expression of DMP1β reduced endogenous ARF mRNA levels in human fibroblasts. The DMP1β- and γ-isoforms share domains necessary for the inhibitory function of the β-isoform. That DMP1β may interact with DMP1α to antagonize its function was shown in DNA binding assays and in cells by the close proximity of DMP1α/β in the nucleus. Cells stably expressing DMP1β, as well as shRNA targeting all DMP1 isoforms, disrupted cellular growth arrest induced by serum deprivation or in PMA-derived macrophages in the presence or absence of cellular p53. DMP1 mRNA levels in acute myeloid leukemia samples, as compared to granulocytes, were reduced. Treatment of acute promyelocytic leukemia patient samples with all-trans retinoic acid promoted differentiation to granulocytes and restored DMP1 transcripts to normal granulocyte levels. Our findings imply that DMP1α- and β-ratios are tightly regulated in hematopoietic cells and DMP1β antagonizes DMP1α transcriptional regulation of ARF resulting in the alteration of cellular control with a gain in proliferation.