112 resultados para cell-free antigens
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Focal osteochondral defects are still a challenging problem in joint surgery. We have developed a two-layered implant consisting of a basal porous beta-tricalcium phosphate (TCP) for bone reconstruction and a superficial fibrous collagen type I/III layer for cartilage regeneration. Fifty-four osteochondral defects in the trochlear groove of 27 Göttinger Minipigs were created and either left untreated, treated with the implant alone, or the implant augmented with an additional growth factor mixture, which was assumed to stimulate cell and tissue differentiation. Follow-up was 6, 12 and 52 weeks with n=6 for each group. The repair tissue was evaluated for its gross appearance and biomechanical properties. Histological sections were semi-quantitatively scored for their histomorphological structure. Treatment with the two-layered implant improved defect filling and subchondral bone repair at 6 and 12 weeks follow-up. The TCP was replaced by cancellous bone at 52 weeks. Cartilage repair tissue mainly consisted of fibrocartilage and showed a moderate cell density up to the joint surface. Growth factor treatment improved the mechanical and histomorphological properties of the cartilage repair tissue at 12, but not at 52 weeks postoperatively. In conclusion, the two-layered collagen-TCP implant augmented with chondroinductive growth factors seems a promising new option for the treatment of deep osteochondral defects in joint surgery.
Resumo:
BACKGROUND: Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE: Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
Resumo:
The plasticity and self-regenerative properties of stem cells have opened new avenues in regenerative medicine. Greater understanding of the biology of stem cells is followed by growing expectations of a rapid translation into alternative therapeutic options. Recent preclinical studies and clinical trials employing stem and progenitor cells from different sources have shown encouraging results. However, their underlying mechanisms are still poorly understood, the potential adverse effects and the discrepancy in efficacy remain to be further investigated. Their essential role in vessel regeneration has made endothelial progenitor cells (EPC) a suitable candidate for therapeutic applications aiming at tissue revascularisation. Recent evidence suggests that EPC contribute to neovascularisation not only by direct participation in tissue homeostasis but mainly via paracrine mechanisms. In future, novel therapeutic strategies could be based on EPC paracrine factors or synthetic factors, and replace cell transplantation.
Resumo:
Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7 days in culture or directly as dissociated cell suspensions, and compared with regard to neuronal survival and ability to normalize rotational behavior in adult rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. Other lesioned rats received injections of cell-free medium and served as controls. The amphetamine-induced rotational behavior of all 6-OHDA-lesioned animals was monitored at various time points from 18 days before transplantation and up to 80 days after transplantation. Tyrosine hydroxylase (TH) immunostaining of the histologically processed brains served to assess the long-term survival of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral improvements in terms of significant reductions in amphetamine-induced rotations were observed in rats grafted with FFRT cultures (127%) and rats grafted with cell suspensions (122%), while control animals showed no normalization of rotational behavior. At 84 days after transplantation, there were similar numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after explantation, with an additional 23.1% loss after grafting, leaving 8.7% of the original number of TH-ir cells in the intracerebral grafts. This is to be compared with a survival rate of 9.1% for the TH-ir cells in the cell-suspension grafts. Immunostaining for the calcium-binding proteins calretinin, calbindin, and parvalbumin showed no differences in the neuronal expression of these proteins between the two graft types. In conclusion, we found comparable dopaminergic cell survival and functional effects of tissue-culture grafts and cell-suspension grafts, which currently is the type of graft most commonly used for experimental and clinical grafting. In this sense the result is promising for the development of an effective in vitro storage of fetal nigral tissue, which at the same time would allow neuroprotective and neurotrophic treatment prior to intracerebral transplantation.
Resumo:
This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.
Resumo:
Exosomes are small natural membrane vesicles released by a wide variety of cell types into the extracellular compartment by exocytosis. The biological functions of exosomes are only slowly unveiled, but it is clear that they serve to remove unnecessary cellular proteins (e.g., during reticulocyte maturation) and act as intercellular messengers because they fuse easily with the membranes of neighboring cells, delivering membrane and cytoplasmic proteins from one cell to another. Recent findings suggests that cell-derived vesicles (exosomes are also named membranous vesicles or microvesicles) could also induce immune tolerance, suppression of natural killer cell function, T cell apoptosis, or metastasis. For example, by secreting exosomes, tumors may be able to accomplish the loss of those antigens that may be immunogenic and capable of signaling to immune cells as well as inducing dysfunction or death of immune effector cells. On the other hand, dendritic cell-derived exosomes have the potential to be an attractive powerful immunotherapeutic tool combining the antitumor activity of dendritic cells with the advantages of a cell-free vehicle. Although the full understanding of the significance of exosomes requires additional studies, these membrane vesicles could become a new important component in orchestrating responses between cells.
Resumo:
BACKGROUND The soluble factors secreted by mesenchymal stem cells are thought to either support or inhibit tumor growth. Herein, we investigated whether the human lung-derived mesenchymal stem cell-conditioned medium (hlMSC-CM) exerts antitumor activity in malignant pleural mesothelioma cell lines H28, H2052 and Meso4. METHODS hlMSC-CM was collected from the human lung-derived mesenchymal stem cells. Inhibition of tumor cell growth was based on the reduction of cell viability and inhibition of cell proliferation using the XTT and BrdU assays, respectively. Elimination of tumor spheroids was assessed by the anchorage-independent sphere formation assay. The cytokine profile of hlMSC-CM was determined by a chemiluminescence-based cytokine array. RESULTS Our data showed that hlMSC-CM contains a broad range of soluble factors which include: cytokines, chemokines, hormones, growth and angiogenic factors, matrix metalloproteinases, metalloproteinase inhibitors and cell-cell mediator proteins. The 48- and 72-hour hlMSC-CM treatments of H28, H2052 and Meso4 cell lines elicited significant decreases in cell viability and inhibited cell proliferation. The 72-hour hlMSC-CM incubation of H28 cells completely eliminated the drug-resistant sphere-forming cells, which is more potent than twice the half maximal inhibitory concentration of cisplatin. CONCLUSIONS Our findings indicate that the cell-free hlMSC-CM confers in vitro antitumor activities via soluble factors in the tested mesothelioma cells and, hence, may serve as a therapeutic tool to augment the current treatment strategies in malignant pleural mesothelioma.
Resumo:
Background During production and processing of multi-walled carbon nanotubes (MWCNTs), they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2)- and carboxyl (-COOH)-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.
Resumo:
Reactive oxygen species (ROS) production is important in the toxicity of pathogenic particles such as fibres. We examined the oxidative potential of straight (50 microm and 10 microm) and tangled carbon nanotubes in a cell free assay, in vitro and in vivo using different dispersants. The cell free oxidative potential of tangled nanotubes was higher than for the straight fibres. In cultured macrophages tangled tubes exhibited significantly more ROS at 30 min, while straight tubes increased ROS at 4 h. ROS was significantly higher in bronchoalveolar lavage cells of animals instilled with tangled and 10 mum straight fibres, whereas the number of neutrophils increased only in animals treated with the long tubes. Addition of dispersants in the suspension media lead to enhanced ROS detection by entangled tubes in the cell-free system. Tangled fibres generated more ROS in a cell-free system and in cultured cells, while straight fibres generated a slower but more prolonged effect in animals.
Resumo:
The African trypanosome, Trypanosoma brucei, has been used as a model to study the biosynthesis of GPI (glycosylphosphatidylinositol) anchors. In mammalian (bloodstream)-form parasites, diacyl-type GPI precursors are remodelled in their lipid moieties before attachment to variant surface glycoproteins. In contrast, the GPI precursors of insect (procyclic)-form parasites, consisting of lyso-(acyl)PI (inositol-acylated acyl-lyso-phosphatidylinositol) species, remain unaltered before protein attachment. By using a combination of metabolic labelling, cell-free assays and complementary MS analyses, we show in the present study that GPI-anchored glycoconjugates in T. congolense procyclic forms initially receive tri-acylated GPI precursors, which are subsequently de-acylated either at the glycerol backbone or on the inositol ring. Chemical and enzymatic treatments of [3H]myristate-labelled lipids in combination with ESI-MS/MS (electrospray ionization-tandem MS) and MALDI-QIT-TOF-MS3 (matrix-assisted laser-desorption ionization-quadrupole ion trap-time-of-flight MS) analyses indicate that the structure of the lipid moieties of steady-state GPI lipids from T. congolense procyclic forms consist of a mixture of lyso-(acyl)PI, diacyl-PI and diacyl-(acyl)PI species. Interestingly, some of these species are myristoylated at the sn-2 position. To our knowledge, this is the first demonstration of lipid remodelling at the level of protein- or polysaccharide-linked GPI anchors in procyclic-form trypanosomes.
Resumo:
The objective of the study was to determine the feasibility of generating a biodegradable, stem cell-loaded osteogenic composite graft from human placenta. Initially, a scaffold from human chorion membrane was produced. Human placenta mesenchymal stem cells (MSCs) derived from either first-trimester chorionic villi or term chorion membrane were differentiated osteogenically on this scaffold. Outgrowth, adherence, and osteogenic differentiation of cells were assessed by immunohistochemistry (IHC), scanning electron microscopy, protein expression, and real-time polymerase chain reaction (RT-PCR). Our results showed that a cell-free extracellular matrix scaffold can be generated from human chorion. Seeded MSCs densely adhered to that scaffold and were osteogenically differentiated. Calcium and alkaline phosphatase were detected in the cell-scaffold constructs as a proof of mineralization and findings were confirmed by IHC and RT-PCR results. This study shows for the first time that generation of an osteogenic composite graft using placental tissue is feasible. It might allow therapeutic application of autologous or allogeneic grafts in congenital skeletal defects by means of a composite graft.
Resumo:
During the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. A direct and fast activation of caspase-8 by cathepsin D was shown to be crucial in the initial steps of neutrophil apoptosis. Nevertheless, the activation mechanism of caspase-8 remains unclear. Here, by using site-specific mutants of caspase-8, we show that both cathepsin D-mediated proteolysis and homodimerization of caspase-8 are necessary to generate an active caspase-8. At acidic pH, cathepsin D specifically cleaved caspase-8 but not the initiator caspase-9 or -10 and significantly increased caspase-8 activity in dimerizing conditions. These events were completely abolished by pepstatin A, a pharmacological inhibitor of cathepsin D. The cathepsin D intra-chain proteolysis greatly stabilized the active site of caspase-8. Moreover, the main caspase-8 fragment generated by cathepsin D cleavage could be affinity-labeled with the active site probe biotin-VAD-fluoromethyl ketone, suggesting that this fragment is enzymatically active. Importantly, in an in vitro cell-free assay, the addition of recombinant human caspase-8 protein, pre-cleaved by cathepsin D, was followed by caspase-3 activation. Our data therefore indicate that cathepsin D is able to initiate the caspase cascade by direct activation of caspase-8. As cathepsin D is ubiquitously expressed, this may represent a general mechanism to induce apoptosis in a variety of immune and nonimmune cells.
Resumo:
The exact molecular mechanisms leading to delayed apoptosis, a phenomenon frequently observed in eosinophil inflammatory responses, remain largely unknown. Here, we show that cultured eosinophils purified from blood of hypereosinophilic syndrome (HES) patients exhibit delayed spontaneous death and relative resistance towards ceramide- but not CD95-mediated death. The subsequent investigation of members of the inhibitor of apoptosis (IAP) family revealed that HES but not normal eosinophils expressed high levels of cellular IAP-2 (cIAP-2) and survivin. The eosinophil hematopoietins IL-3, IL-5, and GM-CSF increased the expression of cIAP-2 and survivin in normal eosinophils in vitro. In the blood of HES patients, we observed increased concentrations of IL-3 and/or IL-5, suggesting that these cytokines are, at least partially, responsible for the elevated levels of cIAP-2 and survivin in the eosinophils of these patients. Utilizing a cell-free system in which caspase-3 was activated in eosinophil cytosolic extracts by addition of cytochrome c and immunodepletion of cIAP-2 or survivin resulted in accelerated caspase activation. These data suggest that some members of the IAP family including survivin are regulated by survival cytokines and inhibit the caspase cascade in HES eosinophils. The cytokine-dependent mechanism of delayed eosinophil apoptosis described here may also apply to other eosinophilic diseases.