2 resultados para cell manufacturing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Among the many cell types that may prove useful to regenerative medicine, mounting evidence suggests that human term placenta-derived cells will join the list of significant contributors. In making new cell therapy-based strategies a clinical reality, it is fundamental that no a priori claims are made regarding which cell source is preferable for a particular therapeutic application. Rather, ongoing comparisons of the potentiality and characteristics of cells from different sources should be made to promote constant improvement in cell therapies, and such comparisons will likely show that individually tailored cells can address disease-specific clinical needs. The principle underlying such an approach is resistance to the notion that comprehensive characterization of any cell type has been achieved, neither in terms of phenotype nor risks-to-benefits ratio. Tailoring cell therapy approaches to specific conditions also requires an understanding of basic disease mechanisms and close collaboration between translational researchers and clinicians, to identify current needs and shortcomings in existing treatments. To this end, the international workshop entitled "Placenta-derived stem cells for treatment of inflammatory diseases: moving toward clinical application" was held in Brescia, Italy, in March 2009, and aimed to harness an understanding of basic inflammatory mechanisms inherent in human diseases with updated findings regarding biological and therapeutic properties of human placenta-derived cells, with particular emphasis on their potential for treating inflammatory diseases. Finally, steps required to allow their future clinical application according to regulatory aspects including good manufacturing practice (GMP) were also considered. In September 2009, the International Placenta Stem Cell Society (IPLASS) was founded to help strengthen the research network in this field.
Resumo:
BACKGROUND: Intracoronary application of BM-derived cells for the treatment of acute myocardial infarction (AMI) is currently being studied intensively. Simultaneously, strict legal requirements surround the production of cells for clinical studies. Thus good manufacturing practice (GMP)-compliant collection and preparation of BM for patients with AMI was established by the Cytonet group. METHODS: As well as fulfillment of standard GMP requirements, including a manufacturing license, validation of the preparation process and the final product was performed. Whole blood (n=6) and BM (n=3) validation samples were processed under GMP conditions by gelafundin or hydroxyethylstarch sedimentation in order to reduce erythrocytes/platelets and volume and to achieve specifications defined in advance. Special attention was paid to the free potassium (<6 mmol/L), some rheologically relevant cellular characteristics (hematocrit <0.45, platelets <450 x 10(6)/mL) and the sterility of the final product. RESULTS: The data were reviewed and GMP compliance was confirmed by the German authorities (Paul-Ehrlich Institute). Forty-five BM cell preparations for clinical use were carried out following the validated methodology and standards. Additionally three selections of CD34+ BM cells for infusion were performed. All specification limits were met. Discussion In conclusion, preparation of BM cells for intracoronary application is feasible under GMP conditions. As the results of sterility testing may not be available at the time of intracoronary application, the highest possible standards to avoid bacterial and other contaminations have to be applied. The increased expense of the GMP-compliant process can be justified by higher safety for patients and better control of the final product.