54 resultados para cell line SCC 25
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The human GH gene is 1.7 kilobase pairs (kb) in length and is composed of five exons and four introns. This gene is expressed in the pituitary gland and encodes a 22 kDa protein. In addition to this predominant (75%) form, 5-10% of pituitary GH is present as a 20 kDa protein that has an amino acid (aa) sequence identical to the 22 kDa form except for a 15 aa internal deletion of residues 32-46 as a result of an alternative splicing event. Because it has been reported that non-22-kDa GH isoforms might be partly responsible for short stature and growth retardation in children, the aim of this study was to compare the impact of both 22 kDa and 20 kDa GH on GH receptor gene (GH receptor/GH binding protein (GHR/GHBP)) expression. Various concentrations of 20 kDa and 22 kDa GH (0, 2, 5, 12.5, 25, 50 and 150 ng/ml) were added to human hepatoma (HuH7) cells cultured in serum-free hormonally defined medium for 0, 1 and 2 h. Thereafter GHR/GHBP mRNA expression was measured by quantitative PCR. Addition of either 20 kDa or 22 kDa GH, at low or normal physiological concentrations (0, 2, 5, 12.5, 25 or 50 ng/ml) induced a dose-dependent increase in GHR/GHBP expression. However, a supraphysiological concentration of 20 kDa GH (150 ng/ml) resulted in a significantly lower (P<0.05) downregulation of GHR/GHBP gene transcription compared with the downregulation achieved by this concentration of 22 kDa GH. This difference might be explained by a decreased ability to form a 1 : 1 complex with GHR and/or GHBP, which normally occurs at high concentrations of GH. Nuclear run-on experiments and GHBP determinations confirmed the changes in GHR/GHBP mRNA levels. In conclusion, we report that both 20 kDa and 22 kDa GH, in low and normal physiological concentrations, have the same effect on regulation of GHR/GHBP gene transcription in a human hepatoma cell line. At a supraphysiological concentration of 150 ng/ml, however, 20 kDa GH has a less self-inhibitory effect than the 22 kDa form.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.
Resumo:
Sphingosine 1-phosphate (S1P) is a potent mitogenic signal generated from sphingosine by the action of sphingosine kinases (SKs). In this study, we show that in the human arterial endothelial cell line EA.hy 926 histamine induces a time-dependent upregulation of the SK-1 mRNA and protein expression which is followed by increased SK-1 activity. A similar upregulation of SK-1 is also observed with the direct protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). In contrast, SK-2 activity is not affected by neither histamine nor TPA. The increased SK-1 protein expression is due to stimulated de novo synthesis since cycloheximide inhibited the delayed SK-1 protein upregulation. Moreover, the increased SK-1 mRNA expression results from an increased promoter activation by histamine and TPA. In mechanistic terms, the transcriptional upregulation of SK-1 is dependent on PKC and the extracellular signal-regulated protein kinase (ERK) cascade since staurosporine and the MEK inhibitor U0126 abolish the TPA-induced SK-1 induction. Furthermore, the histamine effect is abolished by the H1-receptor antagonist diphenhydramine, but not by the H2-receptor antagonist cimetidine. Parallel to the induction of SK-1, histamine and TPA stimulate an increased migration of endothelial cells, which is prevented by depletion of the SK-1 by small interfering RNA (siRNA). To appoint this specific cell response to a specific PKC isoenzyme, siRNA of PKC-alpha, -delta, and -epsilon were used to selectively downregulate the respective isoforms. Interestingly, only depletion of PKC-alpha leads to a complete loss of TPA- and histamine-triggered SK-1 induction and cell migration. In summary, these data show that PKC-alpha activation in endothelial cells by histamine-activated H1-receptors, or by direct PKC activators leads to a sustained upregulation of the SK-1 protein expression and activity which, in turn, is critically involved in the mechanism of endothelial cell migration.
Resumo:
Sphingosine kinases (SK) catalyze the formation of sphingosine-1-phosphate (S1P) which plays a crucial role in cell growth and survival. Here, we show that prolactin (PRL) biphasically activates the SK-1, but not the SK-2 subtype, in the breast adenocarcinoma cell-line MCF7. A first peak occurs after minutes of stimulation and is followed by a second delayed activation after hours of stimulation. A similar biphasic effect on SK-1 activity is seen for 17beta-estradiol (E(2)). The delayed activation of SK-1 derives from an upregulated mRNA and protein expression and is due to increased SK-1 promoter activity and mechanistically involves STAT5 activation as well as protein kinase C and the classical mitogen-activated protein kinases. Furthermore, glucocorticoids also block both hormone-induced SK-1 expression and activity. Functionally, long-term stimulation of MCF7 cells with PRL or E(2) is well known to trigger increased cell proliferation and migration. Both hormone-induced cell responses critically involve SK-1 activation since the depletion of SK-1, but not SK-2, by siRNA transfection abolishes the hormone-induced cell proliferation and migration. In summary, our data show that PRL and E(2) cause a pronounced delayed SK-1 activation which is due to increased gene transcription, and critically determines the capability of cells to grow and move. Thus, the SK-1 may represent a novel attractive target for anti-tumor therapy.
Resumo:
This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.
Resumo:
Background Airborne particles entering the respiratory tract may interact with the apical plasma membrane (APM) of epithelial cells and enter them. Differences in the entering mechanisms of fine (between 0.1 μm and 2.5 μm) and ultrafine ( ≤ 0.1 μm) particles may be associated with different effects on the APM. Therefore, we studied particle-induced changes in APM surface area in relation to applied and intracellular particle size, surface and number. Methods Human pulmonary epithelial cells (A549 cell line) were incubated with various concentrations of different sized fluorescent polystyrene spheres without surface charge (∅ fine – 1.062 μm, ultrafine – 0.041 μm) by submersed exposure for 24 h. APM surface area of A549 cells was estimated by design-based stereology and transmission electron microscopy. Intracellular particles were visualized and quantified by confocal laser scanning microscopy. Results Particle exposure induced an increase in APM surface area compared to negative control (p < 0.01) at the same surface area concentration of fine and ultrafine particles a finding not observed at low particle concentrations. Ultrafine particle entering was less pronounced than fine particle entering into epithelial cells, however, at the same particle surface area dose, the number of intracellular ultrafine particles was higher than that of fine particles. The number of intracellular particles showed a stronger increase for fine than for ultrafine particles at rising particle concentrations. Conclusion This study demonstrates a particle-induced enlargement of the APM surface area of a pulmonary epithelial cell line, depending on particle surface area dose. Particle uptake by epithelial cells does not seem to be responsible for this effect. We propose that direct interactions between particle surface area and cell membrane cause the enlargement of the APM.
Resumo:
Close similarities of various physiological parameters makes the pig one of the preferred animal models for the study of human diseases, especially those involving the cardiovascular system. Unfortunately, the use of pig models to study diseases such as viral hemorrhagic fevers and endotoxic shock syndrome have been hampered by the lack of the necessary immunological tools to measure important immunoregulatory cytokines such as tumor necrosis factor (TNF). Here we describe a TNF-bioassay which is based on the porcine kidney cell line PK(15). Compared to the widely used murine fibroblastoid cell line L929, the PK(15) cell line displays a 100-1000-fold higher sensitivity for porcine TNF-alpha, a higher sensitivity for human TNF-alpha, and a slightly lower sensitivity for murine TNF-alpha. Using a PK(15) bioassay we can detect recombinant TNF-alpha as well as cytotoxic activity in the supernatants of lipopolysaccharide (LPS)-activated porcine monocytes at high dilutions. This suggests that the sensitivity of the test should permit the detection of TNF in biological specimens such as pig serum.
Resumo:
Hepatic angiosarcoma (AS) is a rare and highly aggressive tumor of endothelial origin with dismal prognosis. Studies of the molecular biology of AS and treatment options are limited as animal models are rare. We have previously shown that inducible knockout of Notch1 in mice leads to spontaneous formation of hepatic AS. The aims of this study were to: (1) establish and characterize a cell line derived from this murine AS, (2) identify molecular pathways involved in the pathogenesis and potential therapeutic targets, and (3) generate a tumor transplantation model. AS cells retained specific endothelial properties such as tube formation activity, as well as expression of CD31 and Von Willebrand factor. However, electron microscopy analysis revealed signs of dedifferentiation with loss of fenestrae and loss of contact inhibition. Microarray and pathway analysis showed substantial changes in gene expression and revealed activation of the Myc pathway. Exposing the AS cells to sorafenib reduced migration, filopodia dynamics, and cell proliferation but did not induce apoptosis. In addition, sorafenib suppressed ERK phosphorylation and expression of cyclin D2. Injection of AS cells into NOD/SCID mice resulted in formation of undifferentiated tumors, confirming the tumorigenic potential of these cells. In summary, we established and characterized a murine model of spontaneous AS formation and hepatic AS cell lines as a useful in vitro tool. Our data demonstrate antitumor activity of sorafenib in AS cells with potent inhibition of migration, filopodia formation, and cell proliferation, supporting further evaluation of sorafenib as a novel treatment strategy. In addition, AS cell transplantation provides a subcutaneous tumor model useful for in vivo preclinical drug testing.Laboratory Investigation advance online publication, 24 November 2014; doi:10.1038/labinvest.2014.141.
Resumo:
Schmallenberg virus (SBV), an arthropod-borne orthobunyavirus was first detected in 2011 in cattle suffering from diarrhea and fever. The most severe impact of an SBV infection is the induction of malformations in newborns and abortions. Between 2011 and 2013 SBV spread throughout Europe in an unprecedented epidemic wave. SBV contains a tripartite genome consisting of the three negative-sense RNA segments L, M, and S. The virus is usually isolated from clinical samples by inoculation of KC (insect) or BHK-21 (mammalian) cells. Several virus passages are required to allow adaptation of SBV to cells in vitro. In the present study, the porcine SK-6 cell line was used for isolation and passaging of SBV. SK-6 cells proved to be more sensitive to SBV infection and allowed to produce higher titers more rapidly as in BHK-21 cells after just one passage. No adaptation was required. In order to determine the in vivo genetic stability of SBV during an epidemic spread of the virus the nucleotide sequence of the genome from seven SBV field isolates collected in summer 2012 in Switzerland was determined and compared to other SBV sequences available in GenBank. A total of 101 mutations, mostly transitions randomly dispersed along the L and M segment were found when the Swiss isolates were compared to the first SBV isolated late 2011 in Germany. However, when these mutations were studied in detail, a previously described hypervariable region in the M segment was identified. The S segment was completely conserved among all sequenced SBV isolates. To assess the in vitro genetic stability of SBV, three isolates were passage 10 times in SK-6 cells and sequenced before and after passaging. Between two and five nt exchanges per genome were found. This low in vitro mutation rate further demonstrates the suitability of SK-6 cells for SBV propagation.
Resumo:
BACKGROUND/AIMS: Skin tumours, in particular squamous-cell carcinomas (SCC), are the most common malignant conditions developing in transplant recipients. The aim of this study is to investigate the frequency and type of skin cancer in patients receiving immunosuppressive therapy after organ transplantation. METHODS: Multivariate logistic regression analysis was performed on data of 243 renal transplant patients who attended the dermatology outpatient clinic for the first time after transplantation in the period January 2002-October 2005. RESULTS: We found an increased risk of actinic keratosis (AK) and SCC in renal transplant recipients with a basal cell carcinoma (BCC) / SCC ratio of 1:7. Older patients had AK more frequently (odds ratio [OR] 1.11, 95% confidence interval [CI] 1.06-1.15; p <0.0001) and SCC (OR 1.14, CI 1.07-1.22; p <0.0001) than younger patients. Men had AK (OR 0.19, CI 0.08-0.45; p = 0.0002) and SCC (OR 0.25, CI 0.07-0.89; p = 0.0332) more frequently than women. The duration of immunosuppressive therapy correlated significantly with the numbers of AKs (OR 1.15, CI 1.08-1.24; p <0.0001) and SCCs (OR 1.16, CI 1.05-1.28; p = 0.0025), and patients with fair skin had more AKs (OR 0.31, CI 0.14-1.24; p <0.0001) and SCCs (OR 0.11, CI 0.02-0.52; p = 0.0054) than darker skinned patients. We could not identify any specific immunosuppressive drug as a distinct risk factor for AK or non-melanoma skin cancer (NMSC). CONCLUSION: Skin cancers are increased in the renal transplant population. Main risk factors for skin cancers are fair skin type and long duration of immunosuppressive therapy. A follow-up programme is necessary for early detection of skin cancer and precancerous conditions. Preventive strategies should include specialist dermatological monitoring and self-examination.
Resumo:
Taking intraoperative frozen sections (FS) is a widely used procedure in oncologic surgery. However so far no evidence of an association of FS analysis and premalignant changes in the surgical margin exists. Therefore, the aim of this study was to evaluate the impact of FS on different categories of the final margins of squamous cell carcinoma (SCC) of the oral cavity and lips.
Bone morphogenetic protein-7 is a MYC target with prosurvival functions in childhood medulloblastoma
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor in children. It is known that overexpression and/or amplification of the MYC oncogene is associated with poor clinical outcome, but the molecular mechanisms and the MYC downstream effectors in MB remain still elusive. Besides contributing to elucidate how progression of MB takes place, most importantly, the identification of novel MYC-target genes will suggest novel candidates for targeted therapy in MB. A group of 209 MYC-responsive genes was obtained from a complementary DNA microarray analysis of a MB-derived cell line, following MYC overexpression and silencing. Among the MYC-responsive genes, we identified the members of the bone morphogenetic protein (BMP) signaling pathway, which have a crucial role during the development of the cerebellum. In particular, the gene BMP7 was identified as a direct target of MYC. A positive correlation between MYC and BMP7 expression was documented by analyzing two distinct sets of primary MB samples. Functional studies in vitro using a small-molecule inhibitor of the BMP/SMAD signaling pathway reproduced the effect of the small interfering RNA-mediated silencing of BMP7. Both approaches led to a block of proliferation in a panel of MB cells and to inhibition of SMAD phosphorylation. Altogether, our findings indicate that high MYC levels drive BMP7 overexpression, promoting cell survival in MB cells. This observation suggests the potential relevance of targeting the BMP/SMAD pathway as a novel therapeutic approach for the treatment of childhood MB.
Resumo:
Low somatic cell count (SCC) is a reliable indicator of high-quality milk free of pathogenic microorganisms. Thus, an important goal in dairy practice is to produce milk with low SCC. Selection for cows with low SCC can sometimes lead to extremely low SCC in single quarters. The cells in milk are, however, predominantly immune cells with important immune functions. To investigate the mammary immune competence of quarters with very low SCC, healthy udder quarters of cows with normal SCC of (40-100) x 10(3) cells/ml and very low SCC of < 20 x 10(3) cells/ml were challenged with lipopolysaccharide (LPS) from Escherichia coli. In the first experiment, SCC and cell viability after a challenge with 50 ng of LPS/quarter was investigated. In the second experiment, tumour necrosis factor alpha (TNF-alpha) concentration and lactate dehydrogenase (LDH) activity in milk, and mRNA expression of various innate immune factors in milk cells were measured after a challenge with 100 mug LPS/quarter. LPS challenge induced an increase of SCC. SCC levels reached were higher in quarters with normal SCC and maximum SCC was reached 1 h earlier than in very low SCC quarters. The increase of TNF-alpha concentrations in milk in response to LPS challenge was lower in quarters with very low SCC than in quarters with normal SCC. The viability of cells and the LDH activity in milk increased in response to LPS challenge, however, without a difference between the groups. The mRNA expression of IL-1beta and IL-8 was increased in milk cells at 12 h after LPS challenge, whereas that of TNF-alpha and lactoferrin was not increased at the measured time points (12, 24 and 36 h after LPS challenge). No differences of mRNA expression of measured immune factors between normal and very low SCC samples were detected. The study showed that udder quarters with very low SCC responded with a less marked increase of SCC compared with quarters with normal SCC. This difference corresponded with simultaneously lower TNF-alpha concentrations in milk. However, the immune competence of the cells themselves based on mRNA expression of TNF-alpha, IL-8, IL-1beta, and lactoferrin, did not differ. The results may indicate that very low SCC can impair the immune competence of udder quarters, because the immune response in udder quarters with lower SCC is less efficient as fewer cells contribute to the production of immunoregulators.
Resumo:
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.