49 resultados para cell function
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
: Because the acinar cells of the exocrine pancreas in patients with Shwachman-Diamond syndrome (SDS) are severely depleted, we hypothesized that a similar deficiency may be present in acinar cells of the parotid gland.
Resumo:
Up to 10% of patients with severe immune-mediated drug hypersensitivity reactions have tendencies to develop multiple drug hypersensitivities (MDH). The reason why certain individuals develop MDH and the underlying pathomechanism are unclear. We investigated different T cell subpopulations in MDH patients and compared them with patients allergic to a single drug and with healthy controls (HC).
Resumo:
BACKGROUND: Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS: A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS: We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION: In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.
Resumo:
OBJECTIVES: We investigated whether qualitative or quantitative alterations of the endothelial progenitor cell (EPC) pool predict age-related structural vessel wall changes. BACKGROUND: We have previously shown that age-related endothelial dysfunction is accompanied by qualitative rather than quantitative changes of EPCs. Animal studies suggest that impaired EPC functions lead to accelerated arterial intimal thickening. METHODS: Intima-media thickness (IMT) was measured in the common carotid artery in our previously published groups of younger (25 +/- 1 years, n = 20) and older (61 +/- 2 years, n = 20) healthy non-smoking volunteers without arterial hypertension, hypercholesterolemia, and diabetes mellitus. Endothelial progenitor cells (EPCs, KDR(+)/CD34(+) and KDR(+)/CD133(+)) were counted in peripheral blood using flow cytometry. In ex vivo expanded EPCs, the function was determined as chemotaxis to VEGF, proliferation, and survival. RESULTS: We observed thicker IMT in older as compared to younger subjects (0.68 +/- 0.03 mm Vs. 0.48 +/- 0.02 mm, P < 0.001). Importantly, there were significant inverse univariate correlations between IMT, EPC chemotaxis, and survival (r = -0.466 P < 0.05; r = -0.463, P < 0.01). No correlation was observed with numbers of circulating EPCs. Multivariate regression analysis revealed that age, mean arterial pressure and migration of EPCs were independent predictors of IMT (R (2 )= 0.58). CONCLUSION: Impaired EPC function may lead to accelerated vascular remodeling due to chronic impairment of endothelial maintenance.
Resumo:
INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.
Resumo:
BACKGROUND Definitive fate of the coronary endothelium after implantation of a drug-eluting stent remains unclear, but evidence has accumulated that treatment with rapamycin-eluting stents impairs endothelial function in human coronary arteries. The aim of our study was to demonstrate this phenomenon on functional, morphological and biochemical level in human internal thoracic arteries (ITA) serving as coronary artery model. METHODS After exposure to rapamycin for 20 h, functional activity of ITA rings was investigated using the organ bath technique. Morphological analysis was performed by scanning electron microscopy and evaluated by two independent observers in blinded fashion. For measurement of endothelial nitric oxide synthase (eNOS) release, mammalian target of rapamycin (mTOR) and protein kinase B (PKB) (Akt) activation, Western blotting on human mammary epithelial cells-1 and on ITA homogenates was performed. RESULTS Comparison of the acetylcholine-induced relaxation revealed a significant concentration-dependent decrease to 66 ± 7 % and 36 ± 7 % (mean ± SEM) after 20-h incubation with 1 and 10 μM rapamycin. Electron microscopic evaluation of the endothelial layer showed no differences between controls and samples exposed to 10 μM rapamycin. Western blots after 20-h incubation with rapamycin (10 nM-1 μM) revealed a significant and concentration-dependent reduction of p (Ser 1177)-eNOS (down to 38 ± 8 %) in human mammary epithelial cells (Hmec)-1. Furthermore, 1 μM rapamycin significantly reduced activation of p (Ser2481)-mTOR (58 ± 11 %), p (Ser2481)-mTOR (23 ± 4 %) and p (Ser473)-Akt (38 ± 6 %) in ITA homogenates leaving Akt protein levels unchanged. CONCLUSIONS The present data suggests that 20-h exposure of ITA rings to rapamycin reduces endothelium-mediated relaxation through down-regulation of Akt-phosphorylation via the mTOR signalling axis within the ITA tissue without injuring the endothelial cell layer.
Resumo:
Kinetic investigations in pediatric acute lymphoblastic leukemia (ALL) are based on all blast cells and, therefore, reflect the proliferative characteristics of the predominant immunophenotype of leukemic cells. Nothing is known about proliferation of immunologically defined rare subpopulations of leukemic cells. In this study, mononuclear cells from the bone marrow of 15 children with untreated CD19 B-cell precursor ALL were examined for proliferative features according to the immunophenotype. After exclusion of highly proliferating residual normal hematopoietic cells, ∼ 3% of blast cells were CD19 and showed a low percentage of cells in S-phase assessed by the bromodeoxyuridine labeling index (BrdU-LI): median BrdU-LI, 0.19% [interquartile range (IQR), 0.15-0.40%]. In contrast, a median BrdU-LI of 7.2% (IQR, 5.7-8.8%) was found for the major CD19 blast cell compartment. Staining smears of sorted CD19 cells for CD10 or CD34 revealed a small fraction of CD19CD10 or CD19CD34 blast cells. These cells were almost nonproliferating with a median BrdU-LI of <0.1% (IQR, 0-0.2%). This proliferative behavior is suggestive of a stem/progenitor cell function and, in addition, the low proliferative activity might render them more resistant to an antiproliferation-based chemotherapy. However, xenotransplantation experiments will be necessary to demonstrate a possible stem cell function.
Resumo:
Natural killer (NK) cells are cytotoxic cells that play a critical role in the innate immune response against infections and tumors. In the elderly, the cytotoxic function of NK cells is often compromised. Telomeres progressively shorten with each cell division and with age in most somatic cells eventually leading to chromosomal instability and cellular senescence. We studied the telomere length in NK cell subsets isolated from peripheral blood using "flow FISH," a method in which the hybridization of telomere probe in cells of interest is measured relative to internal controls in the same tube. We found that the average telomere length in human NK cells decreased with age as was previously found for human T lymphocytes. Separation of adult NK cells based on CD56 and CD16 expression revealed that the telomere length was significantly shorter in CD56(dim)CD16(+) (mature) NK cells compared to CD56(bright)CD16(-) (immature) NK cells from the same donor. Furthermore, sorting of NK cells based on expression of activation markers, such as NKG2D and LFA-1, revealed that NK cells expressing these markers have significantly shorter telomeres. Telomere fluorescence was very heterogeneous in NK cells expressing CD94, killer inhibitory receptor (KIR), NKG2A, or CD161. Our observations indicate that telomeric DNA in NK cells is lost with cell division and with age similar to what has been observed for most other hematopoietic cells. Telomere attrition in NK cells is a plausible cause for diminished NK cell function in the elderly.
Resumo:
It has been established that successful pancreas transplantation in Type 1 (insulin-dependent) diabetic patients results in normal but exaggerated phasic glucose-induced insulin secretion, normal intravenous glucose disappearance rates, improved glucose recovery from insulin-induced hypoglycaemia, improved glucagon secretion during insulin-induced hypoglycaemia, but no alterations in pancreatic polypeptide responses to hypoglycaemia. However, previous reports have not segregated the data in terms of the length of time following successful transplantation and very little prospective data collected over time in individual patients has been published. This article reports that in general there are no significant differences in the level of improvement when comparing responses as early as three months post-operatively up to as long as two years post-operatively when examining the data cross-sectionally in patients who have successfully maintained their allografts. Moreover, this remarkable constancy in pancreatic islet function is also seen in a smaller group of patients who have been examined prospectively at various intervals post-operatively. It is concluded that successful pancreas transplantation results in remarkable improvements in Alpha and Beta cell but not PP cell function that are maintained for at least one to two years.
Resumo:
To characterize pancreatic endocrine secretion and to examine interrelationships among alterations in alpha, beta, and pancreatic polypeptide cell function in patients with cystic fibrosis (CF), we studied 19 patients with exocrine insufficiency (EXO), including 9 receiving insulin therapy (EXO-IT); 10 patients with no exocrine insufficiency (NEXO); and 10 normal control subjects. First-phase C-peptide response to intravenously administered glucose was significantly impaired in CF patients with exocrine insufficiency (EXO-IT = 0.02 +/- 0.01; EXO = 0.11 +/- 0.02; NEXO = 0.25 +/- 0.05; control subjects = 0.30 +/- 0.04 nmol/L). Lowering fasting glucose levels with exogenous insulin administration in EXO-IT did not improve beta cell responsivity to glucose. The C-peptide response to arginine was less impaired (EXO-IT = 0.12 +/- 0.02; EXO = 0.15 +/- 0.02; NEXO = 0.23 +/- 0.06; control subjects = 0.28 +/- 0.04 nmol/L). Alpha cell function, measured as peak glucagon secretion in response to hypoglycemia, was diminished in EXO but not NEXO (EXO-IT = 21 +/- 10; EXO = 62 +/- 19; NEXO = 123 +/- 29; control subjects = 109 +/- 12 ng/L). Despite diminished glucagon response, EXO patients recovered normally from hypoglycemia. Peak pancreatic polypeptide response to hypoglycemia distinguished CF patients with exocrine insufficiency from those without exocrine insufficiency (EXO-IT = 3 +/- 2; EXO = 3 +/- 1; NEXO = 226 +/- 68; control subjects = 273 +/- 100 pmol/L). Thus CF patients with exocrine disease have less alpha, beta, and pancreatic polypeptide cell function than CF patients without exocrine disease. These data suggest either that exocrine disease causes endocrine dysfunction in CF or that a common pathogenic process simultaneously and independently impairs exocrine and endocrine function.
Resumo:
The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10-producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1(PD/PD) animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.
Resumo:
Stem cells reside within tissue, ensuring its natural ability to repair an injury. They are involved in the natural repair of damaged tissue, which encompasses a complex process requiring the modulation of cell survival, extracellular matrix turnover, angiogenesis, and reverse remodeling. To date, the real reparative potential of each tissue is underestimated and noncommittal. The assessment of the biophysical properties of the extracellular environment is an innovative approach to better understand mechanisms underlying stem cell function, and consequently to develop safe and effective therapeutic strategies replacing the loss of tissue. Recent studies have focused on the role played by biomechanical signals that drive stem cell death, differentiation, and paracrinicity in a genetic and/or an epigenetic manner. Mechanical stimuli acting on the shape can influence the biochemistry and gene expression of resident stem cells and, therefore, the magnitude of biological responses that promote the healing of injured tissue. Nanotechnologies have proven to be a revolutionary tool capable of dissecting the cellular mechanosensing apparatus, allowing the intercellular cross-talk to be decoded and enabling the reparative potential of tissue to be enhanced without manipulation of stem cells. This review highlights the most relevant findings of stem cell mechanobiology and presents a fascinating perspective in regenerative medicine.