9 resultados para carboxyfluorescein diacetate succinimidyl ester
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.
Resumo:
BACKGROUND Asialoglycoprotein receptor-1 (ASGR1) mediates capture and phagocytosis of platelets in pig-to-primate liver xenotransplantation. However, thrombocytopenia is also observed in xenotransplantation or xenoperfusion of other porcine organs than liver. We therefore assessed ASGR1 expression as well as ASGR1-mediated xenogeneic platelet phagocytosis in vitro and ex vivo on porcine aortic, femoral arterial, and liver sinusoidal endothelial cells (PAEC/PFAEC/PLSEC). METHODS Porcine forelimbs were perfused with whole, heparinized human or autologous pig blood. Platelets were counted at regular intervals. Pig limb muscle and liver, as well as PAEC/PFAEC/PLSEC, were characterized for ASGR1 expression. In vitro, PAEC cultured on microcarrier beads and incubated with non-anticoagulated human blood were used to study binding of human platelets and platelet-white blood cell aggregation. Carboxyfluorescein diacetate succinimidyl ester-labeled human platelets were exposed to PAEC/PFAEC/PLSEC and analyzed for ASGR1-mediated phagocytosis. RESULTS Human platelet numbers decreased from 102 ± 33 at beginning to 13 ± 6 × 10/μL (P < 0.0001) after 10 minutes of perfusion, whereas no significant decrease of platelets was seen during autologous perfusions (171 ± 26 to 122 ± 95 × 10/μL). The PAEC, PFAEC, and PLSEC all showed similar ASGR1 expression. In vitro, no correlation was found between reduction in platelet count and platelet-white blood cell aggregation. Phagocytosis of human carboxyfluorescein diacetate succinimidyl ester-labeled platelets by PAEC/PFAEC/PLSEC peaked at 15 minutes and was inhibited (P < 0.05 to P < 0.0001) by rabbit anti-ASGR1 antibody and asialofetuin. CONCLUSIONS The ASGR1 expressed on aortic and limb arterial pig vascular endothelium plays a role in binding and phagocytosis of human platelets. Therefore, ASGR1 may represent a novel therapeutic target to overcome thrombocytopenia associated with vascularized pig-to-primate xenotransplantation.
Resumo:
BACKGROUND: Drug-reactive T cells are involved in most drug-induced hypersensitivity reactions. The frequency of such cells in peripheral blood of patients with drug allergy after remission is unclear. OBJECTIVE: We determined the frequency of drug-reactive T cells in the peripheral blood of patients 4 months to 12 years after severe delayed-type drug hypersensitivity reactions, and whether the frequency of these cell differs from the frequency of tetanus toxoid-reactive T cells. METHODS: We analyzed 5 patients with delayed-type drug hypersensitivity reactions, applying 2 methods: quantification of cytokine-secreting T cells by enzyme-linked immunospot (ELISpot), and fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) intensity distribution analysis of drug-reactive T cells. RESULTS: Frequencies found were between 0.02% and 0.4% of CD4(+) T cells reacting to the respective drugs measured by CFSE analysis, and between 0.01% and 0.08% of T cells as determined by ELISpot. Reactivity was seen neither to drugs to which the patients were not sensitized nor in healthy individuals after stimulation with any of the drugs used. CONCLUSION: About 1:250 to 1:10,000 of T cells of patients with drug allergy are reactive to the relevant drugs. This frequency of drug-reactive T cells is higher than the frequency of T cells able to recognize recall antigens like tetanus toxoid in the same subjects. A substantial frequency could be observed as long as 12 years later in 1 patient even after strict drug avoidance. Patients with severe delayed drug hypersensitivity reactions are therefore potentially prone to react again to the incriminated drug even years after strict drug avoidance.
Resumo:
Lymphocyte stimulation tests (LST) were performed in five dogs sensitised with ovalbumin (OVA) and seven healthy dogs. In addition, all five OVA-sensitised and two control dogs were tested after two in vivo provocations with OVA-containing eye drops. The isolated cells were suspended in culture media containing OVA and were cultured for up to 12 days. Proliferation was measured as reduction in 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) intensity by flow cytometry on days 0, 3, 6, 9 and 12. A cell proliferation index (CPI) for each day and the area under the curve (AUC) of the CPI was calculated for each dog. All OVA-sensitised dogs demonstrated increased erythema after conjunctival OVA application. The presence of OVA-specific lymphocytes was demonstrated in 2/5 OVA-sensitised dogs before and 4/5 after in vivo provocation. Using the AUC, the difference between OVA-sensitised and control dogs was significant in all three LST before in vivo provocation (P<0.05) and borderline significant (P=0.053) in 2/3 LST after provocation. The most significant difference in CPI was observed after 9 days of culture (P=0.001). This pilot study indicates that the LST allows detection of rare antigen specific memory T-cells in dogs previously sensitised to, but not concurrently undergoing challenge by a specific antigen.
Resumo:
Hormone sensitive lipase (HSL) regulates the hydrolysis of acylglycerols and cholesteryl esters (CE) in various cells and organs, including enterocytes of the small intestine. The physiological role of this enzyme in enterocytes, however, stayed elusive. In the present study we generated mice lacking HSL exclusively in the small intestine (HSLiKO) to investigate the impact of HSL deficiency on intestinal lipid metabolism and the consequences on whole body lipid homeostasis. Chow diet-fed HSLiKO mice showed unchanged plasma lipid concentrations. In addition, feeding with high fat/high cholesterol (HF/HC) diet led to unaltered triglyceride but increased plasma cholesterol concentrations and CE accumulation in the small intestine. The same effect was observed after an acute cholesterol load. Gavaging of radioactively labeled cholesterol resulted in increased abundance of radioactivity in plasma, liver and small intestine of HSLiKO mice 4h post-gavaging. However, cholesterol absorption determined by the fecal dual-isotope ratio method revealed no significant difference, suggesting that HSLiKO mice take up the same amount of cholesterol but in an accelerated manner. mRNA expression levels of genes involved in intestinal cholesterol transport and esterification were unchanged but we observed downregulation of HMG-CoA reductase and synthase and consequently less intestinal cholesterol biosynthesis. Taken together our study demonstrates that the lack of intestinal HSL leads to CE accumulation in the small intestine, accelerated cholesterol absorption and decreased cholesterol biosynthesis, indicating that HSL plays an important role in intestinal cholesterol homeostasis.