4 resultados para carbon offsets

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. The aim of this study is to assess whether past atmospheric δ13C(CH4) variations can be reliably reconstructed from firn air measurements. Isotope reconstructions obtained with a state of the art firn model from different individual sites show unexpectedly large discrepancies and are mutually inconsistent. We show that small changes in the diffusivity profiles at individual sites lead to strong differences in the firn fractionation, which can explain a large part of these discrepancies. Using slightly modified diffusivities for some sites, and neglecting samples for which the firn fractionation signals are strongest, a combined multi-site inversion can be performed, which returns an isotope reconstruction that is consistent with firn data. However, the isotope trends are lower than what has been concluded from Southern Hemisphere (SH) archived air samples and high-accumulation ice core data. We conclude that with the current datasets and understanding of firn air transport, a high precision reconstruction of δ13C of CH4 from firn air samples is not possible, because reconstructed atmospheric trends over the last 50 yr of 0.3–1.5 ‰ are of the same magnitude as inherent uncertainties in the method, which are the firn fractionation correction (up to ~2 ‰ at individual sites), the Kr isobaric interference (up to ~0.8 ‰, system dependent), inter-laboratory calibration offsets (~0.2 ‰) and uncertainties in past CH4 levels (~0.5 ‰).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we assess the climate mitigation potential from afforestation in a mountainous snow-rich region (Switzerland) with strongly varying environmental conditions. Using radiative forcing calculations, we quantify both the carbon sequestration potential and the effect of albedo change at high resolution. We calculate the albedo radiative forcing based on remotely sensed data sets of albedo, global radiation and snow cover. Carbon sequestration is estimated from changes in carbon stocks based on national inventories. We first estimate the spatial pattern of radiative forcing (RF) across Switzerland assuming homogeneous transitions from open land to forest. This highlights where forest expansion still exhibits climatic benefits when including the radiative forcing of albedo change. Second, given that forest expansion is currently the dominant land-use change process in the Swiss Alps, we calculate the radiative forcing that occurred between 1985 and 1997. Our results show that the net RF of forest expansion ranges from −24 W m−2 at low elevations of the northern Prealps to 2 W m−2 at high elevations of the Central Alps. The albedo RF increases with increasing altitude, which offsets the CO2 RF at high elevations with long snow-covered periods, high global radiation and low carbon sequestration. Albedo RF is particularly relevant during transitions from open land to open forest but not in later stages of forest development. Between 1985 and 1997, when overall forest expansion in Switzerland was approximately 4%, the albedo RF offset the CO2 RF by an average of 40%. We conclude that the albedo RF should be considered at an appropriately high resolution when estimating the climatic effect of forestation in temperate mountainous regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Daphnia can ingest methane-oxidizing bacteria and incorporate methanogenic carbon into their biomass, leading to low stable carbon isotope ratios (expressed as δ13C values) of their tissue. Therefore, δ13C analysis of Daphnia resting eggs (ephippia) in lake sediment records can potentially be used to reconstruct past in-lake availability of methane (CH4). However, detailed multilake studies demonstrating that δ13C values of recently deposited Daphnia ephippia (δ13Cephippia) are systematically related to in-lake CH4 concentrations (CH4aq) are still missing. We measured δ13Cephippia from surface sediments of 15 small lakes in Europe, and compared these values with late-summer CH4aq. δ13Cephippia ranged from −51.6‰ to −25.9‰, and was strongly correlated with CH4aq in the surface water and above the sediment (r −0.73 and −0.77, respectively), whereas a negative rather than the expected positive correlation was found with δ13C values of carbon dioxide (CO2) (r −0.54), and no correlation was observed with CO2aq. At eight sites, offsets between δ13 CCO2 and δ13Cephippia exceeded offsets between δ13 CCO2 and δ13Calgae reported in literature. δ13Cephippia was positively correlated with δ13C values of sedimentary organic matter (r 0.54), but up to 20.7‰ lower in all except one of the lakes (average −6.1‰). We conclude that incorporation of methanogenic carbon prior to ephippia formation must have been widespread by Daphnia in our study lakes, especially those with high CH4aq. Our results suggest a systematic relationship between δ13Cephippia values and CH4aq in small temperate lakes, and that δ13Cephippia analysis on sediment records may provide insights into past changes in in-lake CH4aq.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the extent to which δ13C and δD values of freshwater bryozoan statoblasts can provide information about the isotopic composition of zooids, bryozoan food and surrounding water. Bryozoan samples were collected from 23 sites and encompassed ranges of nearly 30‰ for δ13C and 100‰ for δD values. δ13C offsets between zooids and statoblasts generally ranged from −3 to +4.5‰, with larger offsets observed in four samples. However, a laboratory study with Plumatella emarginata and Lophopus crystallinus demonstrated that, in controlled settings, zooids had only 0–1.2‰ higher δ13C values than statoblasts, and 1.7‰ higher values than their food. At our field sites, we observed a strong positive correlation between median δ13C values of zooids and median δ13C values of corresponding statoblasts. We also observed a positive correlation between median δD values of zooids and statoblasts for Plumatella, and a positive correlation between median δD values of statoblasts and δD values of lake water for Plumatella and when all bryozoan taxa were examined together. Our results suggest that isotope measurements on statoblasts collected from flotsam or sediment samples can provide information on the feeding ecology of bryozoans and the H isotopic composition of lake water.