8 resultados para carbon flux

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectra of K0S mesons and Λ hyperons were measured in p+C interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Results on K0S and Λ production in p+C interactions serve as reference for the understanding of the enhancement of strangeness production in nucleus-nucleus collisions. Moreover, they provide important input for the improvement of neutrino flux predictions for the T2K long baseline neutrino oscillation experiment in Japan. Inclusive production cross sections for K0S and Λ are presented as a function of laboratory momentum in intervals of the laboratory polar angle covering the range from 0 up to 240 mrad. The results are compared with predictions of several hadron production models. The K0S mean multiplicity in production processes and the inclusive cross section for K0S production were measured and amount to 0.127 ± 0.005 (stat) ± 0.022 (sys) and 29.0 ± 1.6 (stat) ± 5.0 (sys) mb, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global ocean is a significant sink for anthropogenic carbon (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air–sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty). This estimate includes a broad range of values, suggesting that a combination of approaches is necessary in order to achieve a robust quantification of the ocean sink of anthropogenic CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T2K has performed the first measurement of nu(mu) inclusive charged current interactions on carbon at neutrino energies of similar to 1 GeV where the measurement is reported as a flux-averaged double differential cross section in muon momentum and angle. The flux is predicted by the beam Monte Carlo and external data, including the results from the NA61/SHINE experiment. The data used for this measurement were taken in 2010 and 2011, with a total of 10.8 x 10(19) protons-on-target. The analysis is performed on 4485 inclusive charged current interaction candidates selected in the most upstream fine-grained scintillator detector of the near detector. The flux-averaged total cross section is (phi) = (6.91 +/- 0.13(stat) +/- 0.84(syst)) x 10(-39) cm(2)/nucleon for a mean neutrino energy of 0.85 GeV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a need for accurate predictions of ecosystem carbon (C) and water fluxes in field conditions. Previous research has shown that ecosystem properties can be predicted from community abundance-weighted means (CWM) of plant functional traits and measures of trait variability within a community (FDvar). The capacity for traits to predict carbon (C) and water fluxes, and the seasonal dependency of these trait-function relationships has not been fully explored. Here we measured daytime C and water fluxes over four seasons in grasslands of a range of successional ages in southern England. In a model selection procedure, we related these fluxes to environmental covariates and plant biomass measures before adding CWM and FDvar plant trait measures that were scaled up from measures of individual plants grown in greenhouse conditions. Models describing fluxes in periods of low biological activity contained few predictors, which were usually abiotic factors. In more biologically active periods, models contained more predictors, including plant trait measures. Field-based plant biomass measures were generally better predictors of fluxes than CWM and FDvar traits. However, when these measures were used in combination traits accounted for additional variation. Where traits were significant predictors their identity often reflected seasonal vegetation dynamics. These results suggest that database derived trait measures can improve the prediction of ecosystem C and water fluxes. Controlled studies and those involving more detailed flux measurements are required to validate and explore these findings, a worthwhile effort given the potential for using simple vegetation measures to help predict landscape-scale fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr(-1) since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (similar to 0.4 Pg C yr(-1)) or sequestered in sediments (similar to 0.5 Pg C yr(-1)) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of similar to 0.1 Pg C yr(-1) to the open ocean. According to our analysis, terrestrial ecosystems store similar to 0.9 Pg C yr(-1) at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr(-1) previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1  GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ⟩ϕ=1.11±0.10(stat)±0.18(syst)×10−38  cm2/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10−38  cm2/nucleon and the GENIE prediction is 1.08×10−38  cm2/nucleon. The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cysteine synthesis from sulfide andO-acetyl-L-serine (OAS) is a reaction interconnecting sulfate, nitrogen, and carbon assimilation. UsingLemna minor, we analyzed the effects of omission of CO2 from the atmosphere and simultaneous application of alternative carbon sources on adenosine 5′-phosphosulfate reductase (APR) and nitrate reductase (NR), the key enzymes of sulfate and nitrate assimilation, respectively. Incubation in air without CO2 led to severe decrease in APR and NR activities and mRNA levels, but ribulose-1,5-bisphosphate carboxylase/oxygenase was not considerably affected. Simultaneous addition of sucrose (Suc) prevented the reduction in enzyme activities, but not in mRNA levels. OAS, a known regulator of sulfate assimilation, could also attenuate the effect of missing CO2 on APR, but did not affect NR. When the plants were subjected to normal air after a 24-h pretreatment in air without CO2, APR and NR activities and mRNA levels recovered within the next 24 h. The addition of Suc and glucose in air without CO2 also recovered both enzyme activities, with OAS again influenced only APR.35SO4 2− feeding showed that treatment in air without CO2 severely inhibited sulfate uptake and the flux through sulfate assimilation. After a resupply of normal air or the addition of Suc, incorporation of 35S into proteins and glutathione greatly increased. OAS treatment resulted in high labeling of cysteine; the incorporation of 35S in proteins and glutathione was much less increased compared with treatment with normal air or Suc. These results corroborate the tight interconnection of sulfate, nitrate, and carbon assimilation.