10 resultados para capture-recapture models
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We studied the influence of surveyed area size on density estimates by means of camera-trapping in a low-density felid population (1-2 individuals/100 km(2) ). We applied non-spatial capture-recapture (CR) and spatial CR (SCR) models for Eurasian lynx during winter 2005/2006 in the northwestern Swiss Alps by sampling an area divided into 5 nested plots ranging from 65 to 760 km(2) . CR model density estimates (95% CI) for models M0 and Mh decreased from 2.61 (1.55-3.68) and 3.6 (1.62-5.57) independent lynx/100 km(2) , respectively, in the smallest to 1.20 (1.04-1.35) and 1.26 (0.89-1.63) independent lynx/100 km(2) , respectively, in the largest area surveyed. SCR model density estimates also decreased with increasing sampling area but not significantly. High individual range overlaps in relatively small areas (the edge effect) is the most plausible reason for this positive bias in the CR models. Our results confirm that SCR models are much more robust to changes in trap array size than CR models, thus avoiding overestimation of density in smaller areas. However, when a study is concerned with monitoring population changes, large spatial efforts (area surveyed ≥760 km(2) ) are required to obtain reliable and precise density estimates with these population densities and recapture rates.
Resumo:
Monte Carlo simulation was used to evaluate properties of a simple Bayesian MCMC analysis of the random effects model for single group Cormack-Jolly-Seber capture-recapture data. The MCMC method is applied to the model via a logit link, so parameters p, S are on a logit scale, where logit(S) is assumed to have, and is generated from, a normal distribution with mean μ and variance σ2 . Marginal prior distributions on logit(p) and μ were independent normal with mean zero and standard deviation 1.75 for logit(p) and 100 for μ ; hence minimally informative. Marginal prior distribution on σ2 was placed on τ2=1/σ2 as a gamma distribution with α=β=0.001 . The study design has 432 points spread over 5 factors: occasions (t) , new releases per occasion (u), p, μ , and σ . At each design point 100 independent trials were completed (hence 43,200 trials in total), each with sample size n=10,000 from the parameter posterior distribution. At 128 of these design points comparisons are made to previously reported results from a method of moments procedure. We looked at properties of point and interval inference on μ , and σ based on the posterior mean, median, and mode and equal-tailed 95% credibility interval. Bayesian inference did very well for the parameter μ , but under the conditions used here, MCMC inference performance for σ was mixed: poor for sparse data (i.e., only 7 occasions) or σ=0 , but good when there were sufficient data and not small σ .
Resumo:
Conservation strategies for long-lived vertebrates require accurate estimates of parameters relative to the populations' size, numbers of non-breeding individuals (the “cryptic” fraction of the population) and the age structure. Frequently, visual survey techniques are used to make these estimates but the accuracy of these approaches is questionable, mainly because of the existence of numerous potential biases. Here we compare data on population trends and age structure in a bearded vulture (Gypaetus barbatus) population from visual surveys performed at supplementary feeding stations with data derived from population matrix-modelling approximations. Our results suggest that visual surveys overestimate the number of immature (<2 years old) birds, whereas subadults (3–5 y.o.) and adults (>6 y.o.) were underestimated in comparison with the predictions of a population model using a stable-age distribution. In addition, we found that visual surveys did not provide conclusive information on true variations in the size of the focal population. Our results suggest that although long-term studies (i.e. population matrix modelling based on capture-recapture procedures) are a more time-consuming method, they provide more reliable and robust estimates of population parameters needed in designing and applying conservation strategies. The findings shown here are likely transferable to the management and conservation of other long-lived vertebrate populations that share similar life-history traits and ecological requirements.
Resumo:
The central nervous system (CNS) is an immunologically privileged site to which access of circulating immune cells is tightly controlled by the endothelial blood-brain barrier (BBB; see Glossary) localized in CNS microvessels, and the epithelial blood-cerebrospinal fluid barrier (BCSFB) within the choroid plexus. As a result of the specialized structure of the CNS barriers, immune cell entry into the CNS parenchyma involves two differently regulated steps: migration of immune cells across the BBB or BCSFB into the cerebrospinal fluid (CSF)-drained spaces of the CNS, followed by progression across the glia limitans into the CNS parenchyma. With a focus on multiple sclerosis (MS) and its animal models, this review summarizes the distinct molecular mechanisms required for immune cell migration across the different CNS barriers.
Resumo:
Context. According to the sequential accretion model (or core-nucleated accretion model), giant planet formation is based first on the formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. The most critical part of the model is the formation time of the core: to trigger the accretion of gas, the core has to grow up to several Earth masses before the gas component of the protoplanetary disc dissipates. Aims: We calculate planetary formation models including a detailed description of the dynamics of the planetesimal disc, taking into account both gas drag and excitation of forming planets. Methods: We computed the formation of planets, considering the oligarchic regime for the growth of the solid core. Embryos growing in the disc stir their neighbour planetesimals, exciting their relative velocities, which makes accretion more difficult. Here we introduce a more realistic treatment for the evolution of planetesimals' relative velocities, which directly impact on the formation timescale. For this, we computed the excitation state of planetesimals, as a result of stirring by forming planets, and gas-solid interactions. Results: We find that the formation of giant planets is favoured by the accretion of small planetesimals, as their random velocities are more easily damped by the gas drag of the nebula. Moreover, the capture radius of a protoplanet with a (tiny) envelope is also larger for small planetesimals. However, planets migrate as a result of disc-planet angular momentum exchange, with important consequences for their survival: due to the slow growth of a protoplanet in the oligarchic regime, rapid inward type I migration has important implications on intermediate-mass planets that have not yet started their runaway accretion phase of gas. Most of these planets are lost in the central star. Surviving planets have masses either below 10 M⊕ or above several Jupiter masses. Conclusions: To form giant planets before the dissipation of the disc, small planetesimals (~0.1 km) have to be the major contributors of the solid accretion process. However, the combination of oligarchic growth and fast inward migration leads to the absence of intermediate-mass planets. Other processes must therefore be at work to explain the population of extrasolar planets that are presently known.
Resumo:
An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions.