23 resultados para calcium-dependent proteolysis

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the enormous economic importance of Neospora caninum related veterinary diseases, the number of effective therapeutic agents is relatively small. Development of new therapeutic strategies to combat the economic impact of neosporosis remains an important scientific endeavor. This study demonstrates molecular, structural and phenotypic evidence that N. caninum calcium-dependent protein kinase 1 (NcCDPK1) is a promising molecular target for neosporosis drug development. Recombinant NcCDPK1 was expressed, purified and screened against a select group of bumped kinase inhibitors (BKIs) previously shown to have low IC50s against Toxoplasma gondii CDPK1 and T. gondii tachyzoites. NcCDPK1 was inhibited by low concentrations of BKIs. The three-dimensional structure of NcCDPK1 in complex with BKIs was studied crystallographically. The BKI-NcCDPK1 structures demonstrated the structural basis for potency and selectivity. Calcium-dependent conformational changes in solution as characterized by small-angle X-ray scattering are consistent with previous structures in low Calcium-state but different in the Calcium-bound active state than predicted by X-ray crystallography. BKIs effectively inhibited N. caninum tachyzoite proliferation in vitro. Electron microscopic analysis of N. caninum cells revealed ultra-structural changes in the presence of BKI compound 1294. BKI compound 1294 interfered with an early step in Neospora tachyzoite host cell invasion and egress. Prolonged incubation in the presence of 1294 interfered produced observable interference with viability and replication. Oral dosing of BKI compound 1294 at 50 mg/kg for 5 days in established murine neosporosis resulted in a 10-fold reduced cerebral parasite burden compared to untreated control. Further experiments are needed to determine the PK, optimal dosage, and duration for effective treatment in cattle and dogs, but these data demonstrate proof-of-concept for BKIs, and 1294 specifically, for therapy of bovine and canine neosporosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Nitric oxide (NO) inhibits thrombus formation, vascular contraction, and smooth muscle cell proliferation. We investigated whether NO release is enhanced after endothelial NO synthase (eNOS) gene transfer in atherosclerotic human carotid artery ex vivo. METHODS AND RESULTS: Western blotting and immunohistochemistry revealed that transduction enhanced eNOS expression; however, neither nitrite production nor NO release measured by porphyrinic microsensor was altered. In contrast, transduction enhanced NO production in non-atherosclerotic rat aorta and human internal mammary artery. In transduced carotid artery, calcium-dependent eNOS activity was minimal and did not differ from control conditions. Vascular tetrahydrobiopterin concentrations did not differ between the experimental groups.Treatment of transduced carotid artery with FAD, FMN, NADPH, L-arginine, and either sepiapterin or tetrahydrobiopterin did not alter NO release. Superoxide formation was similar in transduced carotid artery and control. Treatment of transduced carotid artery with superoxide dismutase (SOD), PEG-SOD, PEG-catalase did not affect NO release. CONCLUSIONS: eNOS transduction in atherosclerotic human carotid artery results in high expression without any measurable activity of the recombinant protein. The defect in the atherosclerotic vessels is neither caused by cofactor deficiency nor enhanced NO breakdown. Since angioplasty is performed in atherosclerotic arteries,eNOS gene therapy is unlikely to provide clinical benefit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hint2 belongs to the superfamily of histidine triad hydrolase enzymes. Recently, it has been shown to influence the mitochondria-dependent apoptosis occurring in hepatocytes, but its mechanism of action is still obscure. Here, we demonstrate that Hint2 is expressed in the mitochondria of H295R cells and in normal adrenals, and that this protein is involved in steroidogenesis. The presence of Hint2 in H295R cells was revealed by RT-PCR and by immunoblot analysis of subcellular fractions. The protein appeared associated with mitochondrial membranes, probably facing the interior of the organelle. Hint2 overexpression in H295R cells had no effect on pregnenolone secretion elicited by angiotensin II or K+, whereas protein silencing with specific small interfering RNA resulted in a marked reduction of the steroidogenic response. The duration of the mitochondrial calcium signal induced by angiotensin II was also reduced upon Hint2 down-regulation with small interfering RNA, but not affected after its overexpression, suggesting that under basal conditions, Hint2 is optimally expressed, and not rate limiting in steroidogenesis. Moreover, Hint2 also appeared involved in Ca2+-independent pathways leading to steroid formation. Indeed, pregnenolone formation in response to either forskolin or a hydroxyl analog of cholesterol was markedly reduced after Hint2 silencing. Calcium-dependent and calcium-independent actions of Hint2 on steroidogenesis could be related to its ability to maintain a favorable mitochondrial potential. In conclusion, these data suggest that, in H295R cells, Hint2 is required for an optimal steroidogenic response, possibly because of a particular signalling function exerted within the mitochondria and that still remains to determine at the molecular level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laminin self-assembles into large polymers by a cooperative two-step calcium-dependent mechanism (Yurchenco, P. D., E. C. Tsilibary, A. S. Charonis, and H. Furthmayr. 1985. J. Biol. Chem. 260:7636-7644). The domain specificity of this process was investigated using defined proteolytically generated fragments corresponding to the NH2-terminal globule and adjacent stem of the short arm of the B1 chain (E4), a complex of the two short arms of the A and B2 chains attached to the proximal stem of a third short arm (E1'), a similar complex lacking the globular domains (P1'), and the distal half of the long arm attached to the adjacent portion of the large globule (E8). Polymerization, followed by an increase of turbidity at 360 nm in neutral isotonic TBS containing CaCl2 at 35 degrees C, was quantitatively inhibited in a concentration-dependent manner with laminin fragments E4 and E1' but not with fragments E8 and P1'. Affinity retardation chromatography was used for further characterization of the binding of laminin domains. The migration of fragment E4, but not of fragments E8 and P1', was retarded in a temperature- and calcium-dependent fashion on a laminin affinity column but not on a similar BSA column. These data are evidence that laminin fragments E4 and E1' possess essential terminal binding domains for the self-aggregation of laminin, while fragments E8 and P1' do not. Furthermore, the individual domain-specific interactions that contribute to assembly are calcium dependent and of low affinity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previously, it has been shown that laminin will self-assemble by a two-step calcium-dependent process using end-domain interactions (Yurchenco, P. D., Tsi-library, E. C., Charonis, A. S., and Furthmayr, H. (1985) J. Biol. Chem. 260, 7636-7644). We now find that heparin, at low concentrations, modifies this polymerization by driving the equilibrium further toward aggregation, by producing a denser polymer, and by inducing aggregation in the absence of calcium. This effect on self-assembly is specific in that it is observed with heparin but not with several heparan sulfates or other glycosaminoglycans: it correlates with affinity and depends on the degree of polysaccharide sulfation. Heparin binds to laminin in a calcium-dependent manner with a single class of interaction (KD = 118 +/- 18 nM) and with a binding capacity of one heparin for two laminins. We find the long arm globule (E3) is the only laminin domain which exhibits substantial heparin binding: heparin binds E3 with an affinity (KD = 94 +/- 12 nM) and calcium dependence similar to that for intact laminin. These data strongly suggest that heparin modifies laminin assembly by binding to pairs of long arm globular domains. As a result the polymer may be stabilized at domain E3 and laminin interdomain interactions induced or modified. We further postulate that heparins may act in vivo as specific regulators of the structure and functions of basement membranes by both altering the laminin matrix and by displacing weakly binding heparan sulfates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ca(v)2.1 Ca(2+) channels (P/Q-type), which participate in various key roles in the CNS by mediating calcium influx, are extensively spliced. One of its alternatively-spliced exons is 37, which forms part of the EF hand. The expression of exon 37a (EFa form), but not exon 37b (EFb form), confers the channel an activity-dependent enhancement of channel opening known as Ca(2+)-dependent facilitation (CDF). In this study, we analyzed the trend of EF hand splice variant distributions in mouse, rat and human brain tissues. We observed a developmental switch in rodents, as well as an age and gender bias in human brain tissues, suggestive of a possible role of these EF hand splice variants in neurophysiological specialization. A parallel study performed on rodent brains showed that the data drawn from human and rodent tissues may not necessarily correlate in the process of aging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of glycan-binding inhibitory receptors, and among them, Siglec-8 is selectively expressed on human eosinophils, basophils, and mast cells. On eosinophils, Siglec-8 engagement induces apoptosis, but its function on mast cells is unknown. OBJECTIVE: We sought to study the effect of Siglec-8 engagement on human mast cell survival and mediator release responses. METHODS: Human mast cells were generated from CD34+ precursors. Apoptosis was studied by using flow cytometry. Mast cell mediator release or human lung airway smooth muscle contraction was initiated by FcepsilonRI cross-linking with or without preincubation with Siglec-8 or control antibodies, and release of mediators was analyzed along with Ca++ flux. RBL-2H3 cells transfected with normal and mutated forms of Siglec-8 were used to study how Siglec-8 engagement alters mediator release. RESULTS: Siglec-8 engagement failed to induce human mast cell apoptosis. However, preincubation with Siglec-8 mAbs significantly (P < .05) inhibited FcepsilonRI-dependent histamine and prostaglandin D(2) release, Ca++ flux, and anti-IgE-evoked contractions of human bronchial rings. In contrast, release of IL-8 was not inhibited. Siglec-8 ligation was also shown to inhibit beta-hexosaminidase release and Ca++ flux triggered through FcepsilonRI in RBL-2H3 cells transfected with full-length human Siglec-8 but not in cells transfected with Siglec-8 containing a tyrosine to phenylalanine point mutation in the membrane-proximal immunoreceptor tyrosine-based inhibitory motif domain. CONCLUSION: These data represent the first reported inhibitory effects of Siglec engagement on human mast cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone formation and osseointegration of biomaterials are dependent on angiogenesis and vascularization. Angiogenic growth factors such as vascular endothelial growth factor (VEGF) were shown to promote biomaterial vascularization and enhance bone formation. However, high local concentrations of VEGF induce the formation of malformed, nonfunctional vessels. We hypothesized that a continuous delivery of low concentrations of VEGF from calcium phosphate ceramics may increase the efficacy of VEGF administration.VEGF was co-precipitated onto biphasic calcium phosphate (BCP) ceramics to achieve a sustained release of the growth factor. The co-precipitation efficacy and the release kinetics of the protein were investigated in vitro. For in vivo investigations BCP ceramics were implanted into critical size cranial defects in Balb/c mice. Angiogenesis and microvascularization were investigated over 28 days by means of intravital microscopy. The formation of new bone was determined histomorphometrically. Co-precipitation reduced the burst release of VEGF. Furthermore, a sustained, cell-mediated release of low concentrations of VEGF from BCP ceramics was mediated by resorbing osteoclasts. In vivo, sustained delivery of VEGF achieved by protein co-precipitation promoted biomaterial vascularization, osseointegration, and bone formation. Short-term release of VEGF following superficial adsorption resulted in a temporally restricted promotion of angiogenesis and did not enhance bone formation. The release kinetics of VEGF appears to be an important factor in the promotion of biomaterial vascularization and bone formation. Sustained release of VEGF increased the efficacy of VEGF delivery demonstrating that a prolonged bioavailability of low concentrations of VEGF is beneficial for bone regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy-dependent intestinal calcium absorption is important for the maintenance of calcium and bone homeostasis, especially when dietary calcium supply is restricted. The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is a crucial regulator of this process and increases the expression of the transient receptor potential vanilloid 6 (Trpv6) calcium channel that mediates calcium transfer across the intestinal apical membrane. Genetic inactivation of Trpv6 in mice (Trpv6(-/-)) showed, however, that TRPV6 is redundant for intestinal calcium absorption when dietary calcium content is normal/high and passive diffusion likely contributes to maintain normal serum calcium levels. On the other hand, Trpv6 inactivation impaired the increase in intestinal calcium transport following calcium restriction, however without resulting in hypocalcemia. A possible explanation is that normocalcemia is maintained at the expense of bone homeostasis, a hypothesis investigated in this study. In this study, we thoroughly analyzed the bone phenotype of Trpv6(-/-) mice receiving a normal (approximately 1%) or low (approximately 0.02%) calcium diet from weaning onwards using micro-computed tomography, histomorphometry and serum parameters. When dietary supply of calcium is normal, Trpv6 inactivation did not affect growth plate morphology, bone mass and remodeling parameters in young adult or aging mice. Restricting dietary calcium had no effect on serum calcium levels and resulted in a comparable reduction in bone mass accrual in Trpv6(+/+) and Trpv6(-/-) mice (-35% and 45% respectively). This decrease in bone mass was associated with a similar increase in bone resorption, whereas serum osteocalcin levels and the amount of unmineralized bone matrix were only significantly increased in Trpv6(-/-) mice. Taken together, our findings indicate that TRPV6 contributes to intestinal calcium transport when dietary calcium supply is limited and in this condition indirectly regulates bone formation and/or mineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcium-binding protein calreticulin (CRT) regulates protein folding in the endoplasmic reticulum (ER) and is induced in acute myeloid leukemia (AML) cells with activation of the unfolded protein response. Intracellular CRT translocation to the cell surface induces immunogenic cell death, suggesting a role in tumor suppression. In this study, we investigated CRT regulation in the serum of patients with AML. We found that CRT is not only exposed by exocytosis on the outer cell membrane after treatment with anthracyclin but also ultimately released to the serum in vitro and in AML patients during induction therapy. Leukemic cells of 113 AML patients showed increased levels of cell-surface CRT (P < .0001) and N-terminus serum CRT (P < .0001) compared with normal myeloid cells. Neutrophil elastase was identified to cleave an N-terminus CRT peptide, which was characterized as vasostatin and blocked ATRA-triggered differentiation. Levels of serum vasostatin in patients with AML inversely correlated with bone marrow vascularization, suggesting a role in antiangiogenesis. Finally, patients with increased vasostatin levels had longer relapse-free survival (P = .04) and specifically benefited from autologous transplantation (P = .006). Our data indicate that vasostatin is released from cell-surface CRT and impairs differentiation of myeloid cells and vascularization of the bone marrow microenvironment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connexin45 (Cx45) hemichannels (HCs) open in the absence of Ca(2+) and close in its presence. To elucidate the underlying mechanisms, we examined the role of extra- and intracellular Ca(2+) on the electrical properties of HCs. Experiments were performed on HeLa cells expressing Cx45 using electrical (voltage clamp) and optical (Ca(2+) imaging) methods. HCs exhibit a time- and voltage-dependent current (I(hc)), activating with depolarization and inactivating with hyperpolarization. Elevation of [Ca(2+)](o) from 20 nM to 2 μM reversibly decreases I(hc), decelerates its rate of activation, and accelerates its deactivation. Our data suggest that [Ca(2+)](o) modifies the channel properties by adhering to anionic sites in the channel lumen and/or its outer vestibule. In this way, it blocks the channel pore and reversibly lowers I(hc) and modifies its kinetics. Rapid lowering of [Ca(2+)](o) from 2 mM to 20 nM, achieved early during a depolarizing pulse, led to an outward I(hc) that developed with virtually no delay and grew exponentially in time paralleled by unaffected [Ca(2+)](i). A step increase of [Ca(2+)](i) evoked by photorelease of Ca(2+) early during a depolarizing pulse led to a transient decrease of I(hc) superimposed on a growing outward I(hc); a step decrease of [Ca(2+)](i) elicited by photoactivation of a Ca(2+) scavenger provoked a transient increase in I(hc). Hence, it is tempting to assume that Ca(2+) exerts a direct effect on Cx45 hemichannels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium is a second messenger, which can trigger the modification of synaptic efficacy. We investigated the question of whether a differential rise in postsynaptic Ca2+ ([Ca2+]i) alone is sufficient to account for the induction of long-term potentiation (LTP) and long-term depression (LTD) of EPSPs in the basal dendrites of layer 2/3 pyramidal neurons of the somatosensory cortex. Volume-averaged [Ca2+]i transients were measured in spines of the basal dendritic arbor for spike-timing-dependent plasticity induction protocols. The rise in [Ca2+]i was uncorrelated to the direction of the change in synaptic efficacy, because several pairing protocols evoked similar spine [Ca2+]i transients but resulted in either LTP or LTD. The sequence dependence of near-coincident presynaptic and postsynaptic activity on the direction of changes in synaptic strength suggested that LTP and LTD were induced by two processes, which were controlled separately by postsynaptic [Ca2+]i levels. Activation of voltage-dependent Ca2+ channels before metabotropic glutamate receptors (mGluRs) resulted in the phospholipase C-dependent (PLC-dependent) synthesis of endocannabinoids, which acted as a retrograde messenger to induce LTD. LTP required a large [Ca2+]i transient evoked by NMDA receptor activation. Blocking mGluRs abolished the induction of LTD and uncovered the Ca2+-dependent induction of LTP. We conclude that the volume-averaged peak elevation of [Ca2+]i in spines of layer 2/3 pyramids determines the magnitude of long-term changes in synaptic efficacy. The direction of the change is controlled, however, via a mGluR-coupled signaling cascade. mGluRs act in conjunction with PLC as sequence-sensitive coincidence detectors when postsynaptic precede presynaptic action potentials to induce LTD. Thus presumably two different Ca2+ sensors in spines control the induction of spike-timing-dependent synaptic plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-linking platelet GPIb with the snake C-type lectin echicetin provides a specific technique for activation via this receptor. This allows GPIb-dependent mechanisms to be studied without the necessity for shear stress-induced binding of von Willebrand factor or primary alpha(IIb)beta(3) involvement. We already showed that platelets are activated, including tyrosine phosphorylation, by echicetin-IgMkappa-induced GPIb cross-linking. We now investigate the mechanism further and demonstrate that platelets, without modulator reagents, spread directly on an echicetin-coated surface, by a GPIb-specific mechanism, causing exocytosis of alpha-granule markers (P-selectin) and activation of alpha(IIb)beta(3). This spreading requires actin polymerization and release of internal calcium stores but is not dependent on external calcium nor on src family tyrosine kinases. Cross-linking of GPIb complex molecules on platelets, either in suspension or via specific surface attachment, is sufficient to induce platelet activation.