29 resultados para buds
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.
Resumo:
The intervertebral disc (IVD) is the joint of the spine connecting vertebra to vertebra. It functions to transmit loading of the spine and give flexibility to the spine. It composes of three compartments: the innermost nucleus pulposus (NP) encompassing by the annulus fibrosus (AF), and two cartilaginous endplates connecting the NP and AF to the vertebral body on both sides. Discogenic pain possibly caused by degenerative intervertebral disc disease (DDD) and disc herniations has been identified as a major problem in our modern society. To study possible mechanisms of IVD degeneration, in vitro organ culture systems with live disc cells are highly appealing. The in vitro culture of intact bovine coccygeal IVDs has advanced to a relevant model system, which allows the study of mechano-biological aspects in a well-controlled physiological and mechanical environment. Bovine tail IVDs can be obtained relatively easy in higher numbers and are very similar to the human lumbar IVDs with respect to cell density, cell population and dimensions. However, previous bovine caudal IVD harvesting techniques retaining cartilaginous endplates and bony endplates failed after 1-2 days of culture since the nutrition pathways were obviously blocked by clotted blood. IVDs are the biggest avascular organs, thus, the nutrients to the cells in the NP are solely dependent on diffusion via the capillary buds from the adjacent vertebral body. Presence of bone debris and clotted blood on the endplate surfaces can hinder nutrient diffusion into the center of the disc and compromise cell viability. Our group established a relatively quick protocol to "crack"-out the IVDs from the tail with a low risk for contamination. We are able to permeabilize the freshly-cut bony endplate surfaces by using a surgical jet lavage system, which removes the blood clots and cutting debris and very efficiently reopens the nutrition diffusion pathway to the center of the IVD. The presence of growth plates on both sides of the vertebral bone has to be avoided and to be removed prior to culture. In this video, we outline the crucial steps during preparation and demonstrate the key to a successful organ culture maintaining high cell viability for 14 days under free swelling culture. The culture time could be extended when appropriate mechanical environment can be maintained by using mechanical loading bioreactor. The technique demonstrated here can be extended to other animal species such as porcine, ovine and leporine caudal and lumbar IVD isolation.
Resumo:
Tumor budding is recognized by the World Health Organization as an additional prognostic factor in colorectal cancer but remains unreported in diagnostic work due to the absence of a standardized scoring method. This study aims to assess the most prognostic and reproducible scoring systems for tumor budding in colorectal cancer. Tumor budding on pancytokeratin-stained whole tissue sections from 105 well-characterized stage II patients was scored by 3 observers using 7 methods: Hase, Nakamura, Ueno, Wang (conventional and rapid method), densest high-power field, and 10 densest high-power fields. The predictive value for clinicopathologic features, the prognostic significance, and interobserver variability of each scoring method was analyzed. Pancytokeratin staining allowed accurate evaluation of tumor buds. Interobserver agreement for 3 observers was excellent for densest high-power field (intraclass correlation coefficient, 0.83) and 10 densest high-power fields (intraclass correlation coefficient, 0.91). Agreement was moderate to substantial for the conventional Wang method (κ = 0.46-0.62) and moderate for the rapid method (κ = 0.46-0.58). For Nakamura, moderate agreement (κ = 0.41-0.52) was reached, whereas concordance was fair to moderate for Ueno (κ = 0.39-0.56) and Hase (κ = 0.29-0.51). The Hase, Ueno, densest high-power field, and 10 densest high-power field methods identified a significant association of tumor budding with tumor border configuration. In multivariate analysis, only tumor budding as evaluated in densest high-power field and 10 densest high-power fields had significant prognostic effects on patient survival (P < .01), with high prognostic accuracy over the full 10-year follow-up. Scoring tumor buds in 10 densest high-power fields is a promising method to identify stage II patients at high risk for recurrence in daily diagnostics; it is highly reproducible, accounts for heterogeneity, and has a strong predictive value for adverse outcome.
Resumo:
Although tumor budding is linked to adverse prognosis in colorectal cancer, it remains largely unreported in daily diagnostic work due to the absence of a standardized scoring method. Our aim was to assess the inter-observer agreement of a novel 10-high-power-fields method for assessment of tumor budding at the invasive front and to confirm the prognostic value of tumor budding in our setting of colorectal cancers. Whole tissue sections of 215 colorectal cancers with full clinico-pathological and follow-up information were stained with cytokeratin AE1/AE3 antibody. Presence of buds was scored across 10-high-power fields at the invasive front by two pathologists and two additional observers were asked to score 50 cases of tumor budding randomly selected from the larger cohort. The measurements were correlated to the patient and tumor characteristics. Inter-observer agreement and correlation between observers' scores were excellent (P<0.0001; intraclass correlation coefficient=0.96). A test subgroup of 65 patients (30%) was used to define a valid cutoff score for high-grade tumor budding and the remaining 70% of the patients were entered into the analysis. High-grade budding was defined as an average of ≥10 buds across 10-high-power fields. High-grade budding was associated with a higher tumor grade (P<0.0001), higher TNM stage (P=0.0003), vascular invasion (P<0.0001), infiltrating tumor border configuration (P<0.0001) and reduced survival (P<0.0001). Multivariate analysis confirmed its independent prognostic effect (P=0.007) when adjusting for TNM stage and adjuvant therapy. Using 10-high-power fields for evaluating tumor budding has independent prognostic value and shows excellent inter-observer agreement. Like the BRE and Gleason scores in breast and prostate cancers, respectively, tumor budding could be a basis for a prognostic score in colorectal cancer.
Role of intra- and peritumoral budding in the interdisciplinary management of rectal cancer patients
Resumo:
The presence of tumor budding (TuB) at the invasive front of rectal cancers is a valuable indicator of tumor aggressiveness. Tumor buds, typically identified as single cells or small tumor cell clusters detached from the main tumor body, are characterized by loss of cell adhesion, increased migratory, and invasion potential and have been referred to as malignant stem cells. The adverse clinical outcome of patients with a high-grade TuB phenotype has consistently been demonstrated. TuB is a category IIB prognostic factor; it has yet to be investigated in the prospective setting. The value of TuB in oncological and pathological practice goes beyond its use as a simple histomorphological marker of tumor aggressiveness. In this paper, we outline three situations in which the assessment of TuB may have direct implications on treatment within the multidisciplinary management of patients with rectal cancer: (a) patients with TNM stage II (i.e., T3/T4, N0) disease potentially benefitting from adjuvant therapy, (b) patients with early submucosally invasive (T1, sm1-sm3) carcinomas at a high risk of nodal positivity and (c) the role of intratumoral budding assessed in preoperative biopsies as a marker for lymph node and distant metastasis thus potentially aiding the identification of patients suitable for neoadjuvant therapy.
Resumo:
Tumor budding, a histological hallmark of epithelial-mesenchymal transition in colorectal cancer, is a parameter of tumor progression and according to the International Union Against Cancer/American Joint Committee on Cancer an 'additional' prognostic factor. The current definition of tumor budding is reserved for the invasive tumor front of colorectal cancer (so called peri-tumoral budding), but tumor buds can also be observed in small preoperative biopsy specimens. Whereas the prognostic value of peri-tumoral budding assessed in resection specimens has found wide acceptance, the value of budding in preoperative biopsies, which normally do not encompass the invasive tumor margin and hence can be called intra-tumoral budding, has not been systematically investigated yet. Therefore, the aim of this study is to assess the predictive value of intra-tumoral budding for lymph node and distant metastasis in preoperative biopsies. Preoperative biopsy samples and consecutive resection specimens from 72 patients with pathological information on TNM stage, vascular, lymphatic and perineural invasion, and tumor border configuration were used to evaluate intra-tumoral budding and peri-tumoral budding. Both parameters were scored semiquantitatively as 'high' (detectable at low power magnification × 2.5) and 'low' (occasional budding at intermediate magnification × 10, difficult to find or absent). In biopsy samples high intra-tumoral budding was observed in 12/72 patients (17%) and associated with high peri-tumoral budding in the corresponding resection specimens (P=0.008). Additionally, there was a correlation between high intra-tumoral budding and lymph node metastasis (P=0.034), distant metastasis (P=0.007) and higher tumor grade (P=0.025). Peri-tumoral budding was associated with higher N stage (P=0.004), vascular (P=0.046) and lymphatic invasion (P=0.019) as well as with an infiltrating tumor border (P<0.001), reflecting the predictive power of peri-tumoral budding for tumor progression. High intra-tumoral budding in preoperative biopsy samples of colorectal cancer patients predicts high peri-tumoral budding at the invasive margin and lymph node metastasis in the corresponding resection specimens as well as distant metastasis.
Resumo:
An immunohistochemical examination of guinea-pig taste buds in vallate papillae revealed gustducin-immunoreactive cells in the area of von Ebner’s glands, minor salivary glands. Since there have been no reports describing those cells in these locations for other species, we investigated these glands in order both to localize the cells and compare their immunoreactive characteristics with corresponding cells in the vallate taste buds. The gustducin-immunoreactive cells coincided with cells containing no secretory granules in the end portion of the glands, which was supported by the electron-microscopic immunocytochemistry. Double immunofluorescence microscopy confirmed these cells to be entirely immunopositive to type III inositol 1,4,5-triphosphate receptor (IP3R-3), phospholipase Cβ2 (PLCβ2), and villin and also partly immunopositive to neuron-specific enolase (NSE) and calbindin D-28K. The gustducin-immunoreactive cells in the vallate taste buds exhibited completely the same immunoreactivities for these five molecules. Accordingly, the present results give credence to a consideration that the gustducin-immunnoreactive cells in both locations are identical in function(s) e.g., chemo-reception.
Resumo:
Objective: In 2011, the term “intratumoral budding, ITB” was used to describe the presence of tumor buds within the main tumor body and was correlated to worse clinical outcome in colorectal cancer patients. Here, we further elucidate the potential clinical role of ITB in pre-operative biopsies using pan-cytokeratin stained tissues and a quantitative scoring system. Method: 139 pre-operative biopsies from patients with colorectal cancer underwent immunohistochemistry for pancytokeratin (AE1/AE3). ITB were counted in the area of densest budding (40×) and classified as high-grade when >10 buds/HPF were observed based on receiver operating characteristic (ROC) curve analysis. Results: High-grade ITB occurred in 26.6 % of cases and was associated with right-sided tumor location (p=0.0356), more advanced pT (p=0.0198) and pN (p<0.0001) classifications, distant metastasis (p=0.0164), higher tumor grade (p=0.0037) and lymphatic invasion (p=0.0445). The specificity and positive predictive value for lymph node metastasis was 86.7 % and 75.6 %, respectively. Disease-free survival was significantly worse in patients with high-grade ITB (5-year survival=25 %) in comparison to patients with low-grade ITB (5-year survival=55 %) (p=0.0157). Conclusion: The assessment of ITB in pre-operative biopsies is predictive of local and distant metastasis in corresponding resections and should be considered in daily management of colorectal cancer patients.
Resumo:
Directed release of human immunodeficiency virus type 1 (HIV-1) into the cleft of the virological synapse that can form between infected and uninfected T cells, for example, in lymph nodes, is thought to contribute to the systemic spread of this virus. In contrast, influenza virus, which causes local infections, is shed into the airways of the respiratory tract from free surfaces of epithelial cells. We now demonstrate that such differential release of HIV-1 and influenza virus is paralleled, at the subcellular level, by viral assembly at different microsegments of the plasma membrane of HeLa cells. HIV-1, but not influenza virus, buds through microdomains containing the tetraspanins CD9 and CD63. Consequently, the anti-CD9 antibody K41, which redistributes its antigen and also other tetraspanins to cell-cell adhesion sites, interferes with HIV-1 but not with influenza virus release. Altogether, these data strongly suggest that the bimodal egress of these two pathogenic viruses, like their entry into target cells, is guided by specific sets of host cell proteins.
Resumo:
Background:In colorectal cancer (CRC), tumour budding at the invasion front is associated with lymph node (LN) and distant metastasis. Interestingly, tumour budding can also be detected in biopsies (intratumoural budding; ITB) and may have similar clinical importance. Here we investigate whether ITB in preoperative CRC biopsies can be translated into daily diagnostic practice.Methods:Preoperative biopsies from 133 CRC patients (no neoadjuvant therapy) underwent immunohistochemistry for pan-cytokeratin marker AE1/AE3. Across all biopsies for each patient, the densest region of buds at × 40 (high-power field; HPF) was identified and buds were counted.Results:A greater number of tumour buds in the biopsy was associated with pT stage (P=0.0143), LN metastasis (P=0.0007), lymphatic (P=0.0065) and venous vessel invasion (P=0.0318) and distant metastasis (cM1) (P=0.0013). Using logistic regression, a 'scale' was developed to estimate the probability of LN and distant metastasis using the number of tumour buds (e.g. 10 buds per HPF: 64% chance of LN metastasis; 30 buds per HPF: 86% chance). Inter-observer agreement for ITB was excellent (intraclass correlation coefficient: 0.813).Conclusion:Tumour budding can be assessed in the preoperative biopsy of CRC patients. It is practical, reproducible and predictive of LN and distant metastasis. Intratumoural budding qualifies for further investigation in the prospective setting.
Resumo:
AIMS In colorectal cancer (CRC), tumour buds represent an aggressive cell type at the invasive front with apparently low proliferation. The aim of this study was to determine proliferation and apoptotic rates of buds in comparison to tumour centre, front and mucosa. METHODS AND RESULTS Whole tissue sections from 188 CRC patients underwent immunohistochemistry for Ki67. Ten high-power fields (HPFs) were evaluated in mucosa, tumour centre, tumour front and tumour buds (total = 40 HPFs/case). Caspase-3 and M30 immunohistochemistry were performed on a multipunch tissue microarray from the same cohort. Ki67, caspase-3 and M30 immunoreactivity were correlated with outcome. The average percentage of cells showing Ki67 positivity was 5.2% in mucosa, and was not significantly different between the centre and front of the tumour (38.2% and 34.9%; P < 0.0001); 0.3% of buds showed Ki67 positivity (P < 0.0001). Caspase-3 expression was similar in mucosa, tumour centre and tumour front, but lower in tumour buds (<0.1%; P < 0.0001). M30 staining in buds was decreased (0.01%; P < 0.0001) in comparison to other areas. Ki67 positivity in buds was detrimental to survival in univariate (P = 0.0352) and multivariate (P = 0.0355) analysis. Caspase-3-positive tumours showed better outcome than negative tumours (P = 0.0262); but tumours with caspase-3-positive buds showed a worse outcome than those with caspase-3-negative buds (P = 0.0235). CONCLUSIONS Ki67, caspase-3 and M30 staining is absent in most tumour buds, suggesting decreased proliferation and apoptosis. However, the fact that Ki67 and caspase-3 immunoreactivity was associated with unfavourable prognosis points to a heterogeneous population of tumour buds.
Resumo:
BACKGROUND This study evaluates the geographic expression pattern of Raf-1 Kinase Inhibitor Protein (RKIP) in colorectal cancer (CRC) in correlation with clinicopathological and molecular features, markers of epithelial-mesenchymal transition (EMT) and survival outcome. METHODS Whole-tissue sections of 220 well-characterised CRCs were immunostained for RKIP. NF-κB and E-Cadherin expression was assessed using a matched multi-punch tissue microarray. Analysis of mismatch repair (MMR) protein expression, B-Raf and KRAS mutations was performed. RKIP expression in normal mucosa, tumour centre, invasion front and tumour buds was each assessed for clinical relevance. RESULTS RKIP was diffusely expressed in normal mucosa and progressively lost towards tumour centre and front (P<0.0001). Only 0.9% of tumour buds were RKIP-positive. In the tumour centre, RKIP deficiency predicted metastatic disease (P=0.0307), vascular invasion (P=0.0506), tumour budding (P=0.0112) and an invasive border configuration (P=0.0084). Loss of RKIP correlated with NF-κB activation (P=0.0002) and loss of E-Cadherin (P<0.0001). Absence of RKIP was more common in MMR-deficient cancers (P=0.0191), while no impact of KRAS and B-Raf mutation was observed. RKIP in the tumour centre was identified as a strong prognostic indicator (HR (95% CI): 2.13 (1.27-3.56); P=0.0042) independently of TNM classification and therapy (P=0.0474). CONCLUSION The clinical relevance of RKIP expression as an independent prognostic factor is restricted to the tumour centre. Loss of RKIP predicts features of EMT and correlates with frequent distant metastasis.
Resumo:
BACKGROUND Raf-1 kinase inhibitor protein (RKIP) has emerged as a significant metastatic suppressor in a variety of human cancers and is known to inhibit Ras/Raf/MEK/ERK signaling. By suppressing the activation of the NFkB/SNAIL circuit, RKIP can regulate the induction of epithelial-mesenchymal transition (EMT). The aim of this study was to evaluate RKIP expression and to determine its association with clinicopathological features, including EMT in form of tumor budding in pancreatic ductal adenocarcinoma (PDAC). METHODS Staining for RKIP was performed on a multipunch Tissue Microarray (TMA) of 114 well-characterized PDACs with clinico-pathological, follow-up and adjuvant therapy information. RKIP-expression was assessed separately in the main tumor body and in the tumor buds. Another 3 TMAs containing normal pancreatic tissue, precursor lesions (Pancreatic Intraepithelial Neoplasia, PanINs) and matched lymph node metastases were stained in parallel. Cut-off values were calculated by receiver operating characteristic (ROC) curve analysis. RESULTS We found a significant progressive loss of RKIP expression between normal pancreatic ductal epithelia (average: 74%), precursor lesions (PanINs; average: 37%), PDAC (average 20%) and lymph node metastases (average 8%, p<0.0001). RKIP expression was significantly lower in tumor buds (average: 6%) compared to the main tumor body (average 20%; p<0.005). RKIP loss in the tumor body was marginally associated with advanced T-stage (p=0.0599) as well as high-grade peritumoral (p=0.0048) and intratumoral budding (p=0.0373). RKIP loss in the buds showed a clear association with advanced T stage (p=0.0089). CONCLUSIONS The progressive loss of RKIP seems to play a major role in the neoplastic transformation of pancreas, correlates with aggressive features in PDAC and is associated with the presence of EMT in form of tumor budding.
Resumo:
The molecular regulation of horn growth in ruminants is still poorly understood. To investigate this process, we collected 1019 hornless (polled) animals from different cattle breeds. High-density SNP genotyping confirmed the presence of two different polled associated haplotypes in Simmental and Holstein cattle co-localized on BTA 1. We refined the critical region of the Simmental polled mutation to 212 kb and identified an overlapping region of 932 kb containing the Holstein polled mutation. Subsequently, whole genome sequencing of polled Simmental and Holstein cows was used to determine polled associated genomic variants. By genotyping larger cohorts of animals with known horn status we found a single perfectly associated insertion/deletion variant in Simmental and other beef cattle confirming the recently published possible Celtic polled mutation. We identified a total of 182 sequence variants as candidate mutations for polledness in Holstein cattle, including an 80 kb genomic duplication and three SNPs reported before. For the first time we showed that hornless cattle with scurs are obligate heterozygous for one of the polled mutations. This is in contrast to published complex inheritance models for the bovine scurs phenotype. Studying differential expression of the annotated genes and loci within the mapped region on BTA 1 revealed a locus (LOC100848215), known in cow and buffalo only, which is higher expressed in fetal tissue of wildtype horn buds compared to tissue of polled fetuses. This implicates that the presence of this long noncoding RNA is a prerequisite for horn bud formation. In addition, both transcripts associated with polledness in goat and sheep (FOXL2 and RXFP2), show an overexpression in horn buds confirming their importance during horn development in cattle.
Resumo:
AIMS Tumour buds in colorectal cancer represent an aggressive subgroup of non-proliferating and non-apoptotic tumour cells. We hypothesize that the survival of tumour buds is dependent upon anoikis resistance. The role of tyrosine kinase receptor B (TrkB), a promoter of epithelial-mesenchymal transition and anoikis resistance, in facilitating budding was investigated. METHODS AND RESULTS Tyrosine kinase receptor B immunohistochemistry was performed on a multiple-punch tissue microarray of 211 colorectal cancer resections. Membranous/cytoplasmic and nuclear expression was evaluated in tumour and buds. Tumour budding was assessed on corresponding whole tissue slides. Relationship to Ki-67 and caspase-3 was investigated. Analysis of Kirsten Ras (KRAS), proto-oncogene B-RAF (BRAF) and cytosine-phosphate-guanosine island methylator phenotype (CIMP) was performed. Membranous/cytoplasmic and nuclear TrkB were strongly, inversely correlated (P < 0.0001; r = -0.41). Membranous/cytoplasmic TrkB was overexpressed in buds compared to the main tumour body (P < 0.0001), associated with larger tumours (P = 0.0236), high-grade budding (P = 0.0011) and KRAS mutation (P = 0.0008). Nuclear TrkB was absent in buds (P <0.0001) and in high-grade budding cancers (P =0.0073). Among patients with membranous/cytoplasmic TrkB-positive buds, high tumour membranous/cytoplasmic TrkB expression was a significant, independent adverse prognostic factor [P = 0.033; 1.79, 95% confidence interval (CI) 1.05-3.05]. Inverse correlations between membranous/cytoplasmic TrkB and Ki-67 (r = -0.41; P < 0.0001) and caspase-3 (r =-0.19; P < 0.05) were observed. CONCLUSIONS Membranous/cytoplasmic TrkB may promote an epithelial-mesenchymal transition (EMT)-like phenotype with high-grade budding and maintain viability of buds themselves.