18 resultados para bridging
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The explorative coordination chemistry of the bridging ligand TTF-PPB is presented. Its strong binding ability to Co(II) and then to Ni(II) or Cu(II) in the presence of hexafluoroacetylacetonate (hfac(-)), forming new mono-and dinuclear complexes 1-3, is described. X-ray crystallographic studies have been conducted in the case of the free ligand TTF-PPB as well as its complexes [Co(TTF-PPB)(hfac)(2)] (1) and [Co(hfac)(2)(mu-TTF-PPB)Ni(hfac)(2)] (2). Each metal ion is bonded to two bidentate hfac-anions through their oxygen atoms and two nitrogen atoms of the PPB moiety with a distorted octahedral coordination geometry. Specifically, nitrogen donor atoms of TTF-PPB adopt a cis-coordination but not in the equatorial plane, which is quite rare. Electronic absorption, photoinduced intraligand charge transfer ((1)ILCT), and electrochemical behaviour of 1-3 have been investigated. UV-Vis spectroscopy shows very strong bands in the UV region consistent with ligand centred pi-pi* transitions and an intense broad band in the visible region corresponding to a spin-allowed pi-pi* (1)ILCT transition. Upon coordination, the (1)ILCT band is bathochromically shifted by 3100, 6100 and 5900 cm(-1) on going from 1 to 3. The electrochemical studies reveal that all of them undergo two reversible oxidation and one reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the PPB unit, respectively.
Resumo:
Leukocyte-platelet interaction is important in mediating leukocyte adhesion to a thrombus and leukocyte recruitment to a site of vascular injury. This interaction is mediated at least in part by the beta2-integrin Mac-1 (CD11b/CD18) and its counter-receptor on platelets, glycoprotein Ibalpha (GPIbalpha). High molecular weight kininogen (HK) was previously shown to interact with both GPIbalpha and Mac-1 through its domains 3 and 5, respectively. In this study we investigated the ability of HK to interfere with the leukocyte-platelet interaction. In a purified system, HK binding to GPIbalpha was inhibited by HK domain 3 and the monoclonal antibody (mAb) SZ2, directed against the epitope 269-282 of GPIbalpha, whereas mAb AP1, directed to the region 201-268 of GPIbalpha had no effect. In contrast, mAb AP1 inhibited the Mac-1-GPIbalpha interaction. Binding of GPIbalpha to Mac-1 was enhanced 2-fold by HK. This effect of HK was abrogated in the presence of HK domains 3 or 5 or peptides from the 475-497 region of the carboxyl terminus of domain 5 as well as in the presence of mAb SZ2 but not mAb AP1. Whereas no difference in the affinity of the Mac-1-GPIbalpha interaction was observed in the absence or presence of HK, maximal binding of GPIbalpha to Mac-1 doubled in the presence of HK. Moreover, HK/HKa increased the Mac-1-dependent adhesion of myelomonocytic U937 cells and K562 cells transfected with Mac-1 to immobilized GPIbalpha or to GPIbalpha-transfected Chinese hamster ovary cells. Finally, Mac-1-dependent adhesion of neutrophils to surface-adherent platelets was enhanced by HK. Thus, HK can bridge leukocytes with platelets by interacting via its domain 3 with GPIbalpha and via its domain 5 with Mac-1 thereby augmenting the Mac-1-GPIbalpha interaction. These distinct molecular interactions of HK with leukocytes and platelets contribute to the regulation of the adhesive behavior of vascular cells and provide novel molecular targets for reducing atherothrombotic pathologies.
Resumo:
Uncontrollable intracranial pressure elevation in hyperacute liver failure often proves fatal if no suitable liver for transplantation is found in due time. Both ABO-compatible and auxiliary partial orthotopic liver transplantation have been described to control such scenario. However, each method is associated with downsides in terms of immunobiology, organ availability and effects on the overall waiting list.
Resumo:
The transdisciplinary research project Virtopsy is dedicated to implementing modern imaging techniques into forensic medicine and pathology in order to augment current examination techniques or even to offer alternative methods. Our project relies on three pillars: three-dimensional (3D) surface scanning for the documentation of body surfaces, and both multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) to visualise the internal body. Three-dimensional surface scanning has delivered remarkable results in the past in the 3D documentation of patterned injuries and of objects of forensic interest as well as whole crime scenes. Imaging of the interior of corpses is performed using MSCT and/or MRI. MRI, in addition, is also well suited to the examination of surviving victims of assault, especially choking, and helps visualise internal injuries not seen at external examination of the victim. Apart from the accuracy and three-dimensionality that conventional documentations lack, these techniques allow for the re-examination of the corpse and the crime scene even decades later, after burial of the corpse and liberation of the crime scene. We believe that this virtual, non-invasive or minimally invasive approach will improve forensic medicine in the near future.
Resumo:
PURPOSE: To prospectively assess the depiction rate and morphologic features of myocardial bridging (MB) of coronary arteries with 64-section computed tomographic (CT) coronary angiography in comparison to conventional coronary angiography. MATERIALS AND METHODS: Patients were simultaneously enrolled in a prospective study comparing CT and conventional coronary angiography, for which ethics committee approval and informed consent were obtained. One hundred patients (38 women, 62 men; mean age, 63.8 years +/- 11.6 [standard deviation]) underwent 64-section CT and conventional coronary angiography. Fifty additional patients (19 women, 31 men; mean age, 59.2 years +/- 13.2) who underwent CT only were also included. CT images were analyzed for the direct signs length, depth, and degree of systolic compression, while conventional angiograms were analyzed for the indirect signs step down-step up phenomenon, milking effect, and systolic compression of the tunneled segment. Statistical analysis was performed with Pearson correlation analysis, the Wilcoxon two-sample test, and Fisher exact tests. RESULTS: MB was detected with CT in 26 (26%) of 100 patients and with conventional angiography in 12 patients (12%). Mean tunneled segment length and depth at CT (n = 150) were 24.3 mm +/- 10.0 and 2.6 mm +/- 0.8, respectively. Systolic compression in the 12 patients was 31.3% +/- 11.0 at CT and 28.2% +/- 10.5 at conventional angiography (r = 0.72, P < .001). With CT, a significant correlation was not found between systolic compression and length (r = 0.16, P = .25, n = 150) but was found with depth (r = 0.65, P < .01, n = 150) of the tunneled segment. In 14 patients in whom MB was found at CT but not at conventional angiography, length, depth, and systolic compression were significantly lower than in patients in whom both modalities depicted the anomaly (P < .001, P < .01, and P < .001, respectively). CONCLUSION: The depiction rate of MB is greater with 64-section CT coronary angiography than with conventional coronary angiography. The degree of systolic compression of MB significantly correlates with tunneled segment depth but not length.
Resumo:
Transmission electron microscopy has provided most of what is known about the ultrastructural organization of tissues, cells, and organelles. Due to tremendous advances in crystallography and magnetic resonance imaging, almost any protein can now be modeled at atomic resolution. To fully understand the workings of biological "nanomachines" it is necessary to obtain images of intact macromolecular assemblies in situ. Although the resolution power of electron microscopes is on the atomic scale, in biological samples artifacts introduced by aldehyde fixation, dehydration and staining, but also section thickness reduces it to some nanometers. Cryofixation by high pressure freezing circumvents many of the artifacts since it allows vitrifying biological samples of about 200 mum in thickness and immobilizes complex macromolecular assemblies in their native state in situ. To exploit the perfect structural preservation of frozen hydrated sections, sophisticated instruments are needed, e.g., high voltage electron microscopes equipped with precise goniometers that work at low temperature and digital cameras of high sensitivity and pixel number. With them, it is possible to generate high resolution tomograms, i.e., 3D views of subcellular structures. This review describes theory and applications of the high pressure cryofixation methodology and compares its results with those of conventional procedures. Moreover, recent findings will be discussed showing that molecular models of proteins can be fitted into depicted organellar ultrastructure of images of frozen hydrated sections. High pressure freezing of tissue is the base which may lead to precise models of macromolecular assemblies in situ, and thus to a better understanding of the function of complex cellular structures.