12 resultados para brain gyrus

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical and experimental evidence indicates that inflammatory processes contribute to the pathophysiology of epilepsy, but underlying mechanisms remain mostly unknown. Using immunohistochemistry for CD45 (common leukocyte antigen) and CD3 (T-lymphocytes), we show here microglial activation and infiltration of leukocytes in sclerotic tissue from patients with mesial temporal lobe epilepsy (TLE), as well as in a model of TLE (intrahippocampal kainic acid injection), characterized by spontaneous, nonconvulsive focal seizures. Using specific markers of lymphocytes, microglia, macrophages, and neutrophils in kainate-treated mice, we investigated with pharmacological and genetic approaches the contribution of innate and adaptive immunity to kainate-induced inflammation and neurodegeneration. Furthermore, we used EEG analysis in mutant mice lacking specific subsets of lymphocytes to explore the significance of inflammatory processes for epileptogenesis. Blood-brain barrier disruption and neurodegeneration in the kainate-lesioned hippocampus were accompanied by sustained ICAM-1 upregulation, microglial cell activation, and infiltration of CD3(+) T-cells. Moreover, macrophage infiltration was observed, selectively in the dentate gyrus where prominent granule cell dispersion was evident. Unexpectedly, depletion of peripheral macrophages by systemic clodronate liposome administration affected granule cell survival. Neurodegeneration was aggravated in kainate-lesioned mice lacking T- and B-cells (RAG1-knock-out), because of delayed invasion by Gr-1(+) neutrophils. Most strikingly, these mutant mice exhibited early onset of spontaneous recurrent seizures, suggesting a strong impact of immune-mediated responses on network excitability. Together, the concerted action of adaptive and innate immunity triggered locally by intrahippocampal kainate injection contributes seizure-suppressant and neuroprotective effects, shedding new light on neuroimmune interactions in temporal lobe epilepsy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used a semantic verification task and resting 18-fluorodeoxyglucose positron emission tomography in a group of mild to moderate AD patients to investigate this issue. The four task conditions required semantic knowledge of (1) visual, (2) functional properties of living objects, and (3) visual or (4) functional properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for non-living objects largely overlapped in the left anterior temporal (BA 38/20) and bilateral premotor areas (BA 6), with the visual condition extending more into left lateral precentral areas. There were no associations with functional property verification for living concepts. Our results provide strong support for anatomically separable representations of living and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n = 299), CD1 (n = 42) and BALB/c (n = 14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40 h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The voluntary control of micturition is believed to be integrated by complex interactions among the brainstem, subcortical areas and cortical areas. Several brain imaging studies using positron emission tomography (PET) have demonstrated that frontal brain areas, the limbic system, the pons and the premotor cortical areas were involved. However, the cortical and subcortical brain areas have not yet been precisely identified and their exact function is not yet completely understood. MATERIALS AND METHODS: This study used functional magnetic resonance imaging (fMRI) to compare brain activity during passive filling and emptying of the bladder. A cathetherism of the bladder was performed in seven healthy subjects (one man and six right-handed women). During scanning, the bladder was alternatively filled and emptied at a constant rate with bladder rincing solution. RESULTS: Comparison between passive filling of the bladder and emptying of the bladder showed an increased brain activity in the right inferior frontal gyrus, cerebellum, symmetrically in the operculum and mesial frontal. Subcortical areas were not evaluated. CONCLUSIONS: Our results suggest that several cortical brain areas are involved in the regulation of micturition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Excitotoxic neuronal injury by action of the glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype have been implicated in the pathogenesis of brain damage as a consequence of bacterial meningitis. The most potent and selective blocker of NMDA receptors containing the NR2B subunit is (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (RO 25-6981). Here we evaluated the effect of RO 25-6981 on hippocampal neuronal apoptosis in an infant rat model of meningitis due to Streptococcus pneumoniae. Animals were randomized for treatment with RO 25-6981 at a dosage of either 0.375 mg (15 mg/kg; n = 28) or 3.75 mg (150 mg/kg; n = 15) every 3 h or an equal volume of sterile saline (250 microl; n = 40) starting at 12 h after infection. Eighteen hours after infection, animals were assessed clinically and seizures were observed for a period of 2 h. At 24 h after infection animals were sacrificed and brains were examined for apoptotic injury to the dentate granule cell layer of the hippocampus. RESULTS: Treatment with RO 25-6981 had no effect on clinical scores, but the incidence of seizures was reduced (P < 0.05 for all RO 25-6981 treated animals combined). The extent of apoptosis was not affected by low or high doses of RO 25-6981. Number of apoptotic cells (median [range]) was 12.76 [3.16-25.3] in animals treated with low dose RO 25-6981 (control animals 13.8 [2.60-31.8]; (P = NS) and 9.8 [1.7-27.3] (controls: 10.5 [2.4-21.75]) in animals treated with high dose RO 25-6981 (P = NS). CONCLUSIONS: Treatment with a highly selective blocker of NMDA receptors containing the NR2B subunit failed to protect hippocampal neurons from injury in this model of pneumococcal meningitis, while it had some beneficial effect on the incidence of seizures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The left superior temporal gyrus (STG) has been suggested to play a key role in auditory verbal hallucinations (AVH) in patients with schizophrenia. Methods: Eleven medicated subjects with schizophrenia and medication-resistant AVH and 19 healthy controls underwent perfusion magnetic resonance (MR) imaging with arterial spin labeling (ASL). Three additional repeated measurements were conducted in the patients. Patients underwent a treatment with transcranial magnetic stimulation (TMS) between the first 2 measurements. The main outcome measure was the pooled cerebral blood flow (CBF), which consisted of the regional CBF measurement in the left STG and the global CBF measurement in the whole brain. Results: Regional CBF in the left STG in patients was significantly higher compared to controls (p < 0.0001) and to the global CBF in patients (p < 0.004) at baseline. Regional CBF in the left STG remained significantly increased compared to the global CBF in patients across time (p < 0.0007), and it remained increased in patients after TMS compared to the baseline CBF in controls (p < 0.0001). After TMS, PANSS (p = 0.003) and PSYRATS (p = 0.01) scores decreased significantly in patients. Conclusions: This study demonstrated tonically increased regional CBF in the left STG in patients with schizophrenia and auditory hallucinations despite a decrease in symptoms after TMS. These findings were consistent with what has previously been termed a trait marker of AVH in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND High mortality and morbidity rates are observed in patients with bacterial meningitis (BM) and urge for new adjuvant treatments in addition to standard antibiotic therapies. In BM the hippocampal dentate gyrus is injured by apoptosis while in cortical areas ischemic necrosis occurs. Experimental therapies aimed at reducing the inflammatory response and brain damage have successfully been evaluated in animal models of BM. Fluoxetine (FLX) is an anti-depressant of the selective serotonin reuptake inhibitors (SSRI) and was previously shown to be neuroprotective in vitro and in vivo. We therefore assessed the neuroprotective effect of FLX in experimental pneumococcal meningitis. METHODS Infant rats were infected intracisternally with live Streptococcus pneumoniae. Intraperitoneal treatment with FLX (10mgkg(-1)d(-1)) or an equal volume of NaCl was initiated 15min later. 18, 27, and 42h after infection, the animals were clinically (weight, clinical score, mortality) evaluated and subject to a cisternal puncture and inflammatory parameters (i.e., cyto-/chemokines, myeloperoxidase activity, matrix metalloproteinase concentrations) were measured in cerebrospinal fluid (CSF) samples. At 42h after infection, animals were sacrificed and the brains collected for histomorphometrical analysis of brain damage. RESULTS A significant lower number of animals treated with FLX showed relevant hippocampal apoptosis when compared to littermates (9/19 animals vs 18/23, P=0.038). A trend for less damage in cortical areas was observed in FLX-treated animals compared to controls (13/19 vs 13/23, P=ns). Clinical and inflammatory parameters were not affected by FLX treatment. CONCLUSION A significant neuroprotective effect of FLX on the hippocampus was observed in acute pneumococcal meningitis in infant rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Pneumococcal meningitis (PM) is characterized by high mortality and morbidity including long-term neurofunctional deficits. Neuropathological correlates of these sequelae are apoptosis in the hippocampal dentate gyrus and necrosis in the cortex. Matrix metalloproteinases (MMPs) play a critical role in the pathophysiology of PM. RS-130830 (Ro-1130830, CTS-1027) is a potent partially selective inhibitor of MMPs of a second generation and has been evaluated in clinical trials as an anti-arthritis drug. It inhibits MMPs involved in acute inflammation but has low activity against MMP-1 (interstitial collagenase), MMP-7 (matrilysin) and tumour necrosis factor α converting enzyme (TACE). METHODS A well-established infant rat model of PM was used where live Streptococcus pneumoniae were injected intracisternally and antibiotic treatment with ceftriaxone was initiated 18 h post infection (hpi). Treatment with RS-130830 (75 mg/kg bis in die (bid) i.p., n = 40) was started at 3 hpi while control littermates received the vehicle (succinylated gelatine, n = 42). RESULTS Cortical necrosis was significantly attenuated in animals treated with RS-130830, while the extent of hippocampal apoptosis was not influenced. At 18 hpi, concentrations of interleukin (IL)-1β and IL-10 were significantly lower in the cerebrospinal fluid of treated animals compared to controls. RS-130830 significantly reduced weight loss and leukocyte counts in the cerebrospinal fluid of survivors of PM. CONCLUSION This study identifies MMP inhibition, specifically with RS-130830, as an efficient strategy to attenuate disease severity and cortical brain injury in PM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

People say they enjoy both seeing a preferred social group succeed and seeing an adversary social group fail. At the same time, they state they dislike seeing a preferred social group fail and seeing an adversary social group succeed. The current magnetic resonance imaging study investigated whether-and if so, how-such similarities in reported feeling states are reflected in neural activities. American football fans anticipated success and failure situations for their favorite or their adversary teams. The data support the idea that feeling similarities and divergences expressed in verbal reports carry with them significant neural similarities and differences, respectively. Desired (favorite team likely to win and adversary team likely to lose) rather than undesired (favorite team likely to lose and adversary team likely to win) outcomes were associated with heightened activity in the supramarginal gyrus, posterior cingulate cortex, insula, and cerebellum. Precuneus activity additionally distinguished anticipated desirable outcomes for favorite versus adversary teams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frontal alpha band asymmetry (FAA) is a marker of altered reward processing in major depressive disorder (MDD), associated with reduced approach behavior and withdrawal. However, its association with brain metabolism remains unclear. The aim of this study is to investigate FAA and its correlation with resting – state cerebral blood flow (rCBF). We hypothesized an association of FAA with regional rCBF in brain regions relevant for reward processing and motivated behavior, such as the striatum. We enrolled 20 patients and 19 healthy subjects. FAA scores and rCBF were quantified with the use of EEG and arterial spin labeling. Correlations of the two were evaluated, as well as the association with FAA and psychometric assessments of motivated behavior and anhedonia. Patients showed a left – lateralized pattern of frontal alpha activity and a correlation of FAA lateralization with subscores of Hamilton Depression Rating Scale linked to motivated behavior. An association of rCBF and FAA scores was found in clusters in the dorsolateral prefrontal cortex bilaterally (patients) and in the left medial frontal gyrus, in the right caudate head and in the right inferior parietal lobule (whole group). No correlations were found in healthy controls. Higher inhibitory right – lateralized alpha power was associated with lower rCBF values in prefrontal and striatal regions, predominantly in the right hemisphere, which are involved in the processing of motivated behavior and reward. Inhibitory brain activity in the reward system may contribute to some of the motivational problems observed in MDD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION The neural correlates of impaired performance of gestures are currently unclear. Lesion studies showed variable involvement of the ventro-dorsal stream particularly left inferior frontal gyrus (IFG) in gesture performance on command. However, findings cannot be easily generalized as lesions may be biased by the architecture of vascular supply and involve brain areas beyond the critical region. The neuropsychiatric syndrome of schizophrenia shares apraxic-like errors and altered brain structure without macroanatomic lesions. Schizophrenia may therefore qualify as a model disorder to test neural correlates of gesture impairments. METHODS We included 45 schizophrenia patients and 44 healthy controls in the study to investigate the structural brain correlates of defective gesturing in schizophrenia using voxel based morphometry. Gestures were tested in two domains: meaningful gestures (transitive and intransitive) on verbal command and imitation of meaningless gestures. Cut-off scores were used to separate patients with deficits, patients without deficits and controls. Group differences in gray matter (GM) volume were explored in an ANCOVA. RESULTS Patients performed poorer than controls in each gesture category (p < .001). Patients with deficits in producing meaningful gestures on command had reduced GM predominantly in left IFG, with additional involvement of right insula and anterior cingulate cortex. Patients with deficits differed from patients without deficits in right insula, inferior parietal lobe (IPL) and superior temporal gyrus. CONCLUSIONS Impaired performance of meaningful gestures on command was linked to volume loss predominantly in the praxis network in schizophrenia. Thus, the behavioral similarities between apraxia and schizophrenia are paralleled by structural alterations. However, few associations between behavioral impairment and structural brain alterations appear specific to schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen’s d effect sizes: −0.10 to −0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: −0.26 to −0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.