20 resultados para bracket
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Enamel loss and adhesive remnants following bracket removal and various clean-up procedures in vitro
Resumo:
This study evaluated the enamel loss and composite remnants after debonding and clean-up. The tested null hypothesis is that there are no differences between different polishing systems regarding removing composite remnants without damaging the tooth surface. Brackets were bonded to 75 extracted human molars and removed after a storage period of 100 hours. The adhesive remnant index (ARI) was evaluated. The clean-up was carried out with five different procedures: 1. carbide bur; 2. carbide bur and Brownie and Greenie silicone polishers; 3. carbide bur and Astropol polishers; 4. carbide bur and Renew polishers; and 5. carbide bur, Brownie, Greenie and PoGo polishers. Silicone impressions were made at baseline (T0) and after debonding (T1) and polishing (T2) to produce plaster replicas. The replicas were analysed with a three-dimensional laser scanner and measured with analytical software. Statistical analysis was performed with the Kruskal-Wallis test and pairwise Wilcoxon tests with Bonferroni-Holm adjustment (α = 0.05). Enamel breakouts after debonding were detectable in 27 per cent of all cases, with a mean volume loss of 0.02 mm(3) (±0.03 mm(3)) and depth of 44.9 μm (±48.3 μm). The overall ARI scores was 3 with a few scores of 1 and 2. The composite remnants after debonding had a mean volume of 2.48 mm(3) (±0.92 mm(3)). Mean volume loss due to polishing was 0.05 mm(3) (±0.26 mm(3)) and the composite remnants had a mean volume of 0.22 mm(3) (±0.32 mm(3)). There were no statistically significant differences in volumetric changes after polishing (P = 0.054) between the different clean-up methods. However, sufficient clean-up without enamel loss was difficult to achieve.
Resumo:
To compare the alterations in esthetic appearance and slot morphology/integrity of two main types of esthetic brackets caused after clinical use.
Resumo:
Seaside is the open source framework of choice for developing sophisticated and dynamic web applications. Seaside uses the power of objects to master the web. With Seaside web applications is as simple as building desktop applications. Seaside lets you build highly dynamic and interactive web applications. Seaside supports agile development through interactive debugging and unit testing. Seaside is based on Smalltalk, a proven and robust language implemented by different vendors. Seaside is now available for all the major Smalltalk including Pharo, Squeak, GNU Smalltalk, Cincom Smalltalk, GemStone Smalltalk, and VA Smalltalk.
Resumo:
OBJECTIVES: The aim of the study was to evaluate the biological effects of water eluents from polycarbonate based esthetic orthodontic brackets. METHODS: The composite polycarbonate brackets tested were Silkon Plus (SL, fiber-glass-reinforced), Elan ME (EL, ceramic particle-reinforced) and Elegance (EG, fiber-glass-reinforced). An unfilled polyoxymethylene bracket (Brilliant, BR) was used as control. The brackets' composition was analyzed by ATR-FTIR spectrometry. The cytotoxicity and estrogenicity of the eluents obtained after 3months storage of the brackets in water (37°C) were investigated in murine fibroblasts (NIH 3T3), breast (MCF-7) and cervical cancer (CCl-2/Hela) cell lines. RESULTS: SL and EG were based on aromatic-polycarbonate matrix, whereas EL consisted of an aromatic polycarbonate-polyethylene terepthalate copolymer. A significant induction of cell death and a concurrent decrease in cell proliferation was noted in the EG eluent-treated cells. Moreover, EG eluent significantly reduced the levels of the estrogen signaling associated gene pS2, specifically in MCF7 cells, suggesting that cell death induced by this material is associated with downregulation of estrogen signaling pathways. Even though oxidative stress mechanisms were equally activated by all eluents, the EG eluents induced expression of apoptosis inducing factor (AIF) and reduced Bcl-xL protein levels. SIGNIFICANCE: Some polycarbonate-based composite brackets when exposed to water release substances than activate mitochondrial apoptosis.
Resumo:
Squeak by Example, intended for both students and developers, will guide you gently through the Squeak language and environment by means of a series of examples and exercises. This book is made available under the Creative Commons Attribution-ShareAlike 3.0 license.
Resumo:
Pharo by Example, intended for both students and developers, will guide you gently through the Pharo language and environment by means of a series of examples and exercises. This book is made available under the Creative Commons Attribution-ShareAlike 3.0 license.
Resumo:
The rapid growth of object-oriented development over the past twenty years has given rise to many object-oriented systems that are large, complex and hard to maintain. Object-Oriented Reengineering Patterns addresses the problem of understanding and reengineering such object-oriented legacy systems. This book collects and distills successful techniques in planning a reengineering project, reverse-engineering, problem detection, migration strategies and software redesign. The material in this book is presented as a set of "reengineering patterns" --- recurring solutions that experts apply while reengineering and maintaining object-oriented systems. The principles and techniques described in this book have been observed and validated in a number of industrial projects, and reflect best practice in object-oriented reengineering.
Resumo:
INTRODUCTION Light cure of resin-based adhesives is the mainstay of orthodontic bonding. In recent years, alternatives to conventional halogen lights offering reduced curing time and the potential for lower attachment failure rates have emerged. The relative merits of curing lights in current use, including halogen-based lamps, light-emitting diodes (LEDs), and plasma arc lights, have not been analyzed systematically. In this study, we reviewed randomized controlled trials and controlled clinical trials to assess the risks of attachment failure and bonding time in orthodontic patients in whom brackets were cured with halogen lights, LEDs, or plasma arc systems. METHODS Multiple electronic database searches were undertaken, including MEDLINE, EMBASE, and the Cochrane Oral Health Group's Trials Register, CENTRAL. Language restrictions were not applied. Unpublished literature was searched on ClinicalTrials.gov, the National Research Register, Pro-Quest Dissertation Abstracts, and Thesis database. Search terms included randomized controlled trial, controlled clinical trial, random allocation, double blind method, single blind method, orthodontics, LED, halogen, bond, and bracket. Authors of primary studies were contacted as required, and reference lists of the included studies were screened. RESULTS Randomized controlled trials and clinical controlled trials directly comparing conventional halogen lights, LEDs, or plasma arc systems involving patients with full arch, fixed, or bonded orthodontic appliances (not banded) with follow-up periods of a minimum of 6 months were included. Using predefined forms, 2 authors undertook independent extraction of articles; disagreements were resolved by discussion. The assessment of the risk of bias of the randomized controlled trials was based on the Cochrane Risk of Bias tool. Ten studies met the inclusion criteria; 2 were excluded because of high risk of bias. In the comparison of bond failure risk with halogen lights and plasma arc lights, 1851 brackets were included in both groups. Little statistical heterogeneity was observed in this analysis (I(2) = 4.8%; P = 0.379). There was no statistical difference in bond failure risk between the groups (OR, 0.92; 95% CI, 0.68-1.23; prediction intervals, 0.54, 1.56). Similarly, no statistical difference in bond failure risk was observed in the meta-analysis comparing halogen lights and LEDs (OR, 0.96; 95% CI, 0.64-1.44; prediction intervals, 0.07, 13.32). The pooled estimates from both comparisons were OR, 0.93; 95% CI, 0.74-1.17; and prediction intervals, 0.69, 1.17. CONCLUSIONS There is no evidence to support the use of 1 light cure type over another based on risk of attachment failure.
Resumo:
The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond® Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch. These brackets were bonded on identical maxillary acrylic resin models with levelled and aligned teeth and each model was mounted on the orthodontic measurement and simulation system (OMSS). Ten specimens of 0.017 × 0.025 inch and ten 0.019 × 0.025 inch stainless steel archwires (ORMCO) were evaluated in the low- and high-torque 0.018 inch and 0.022 inch brackets, respectively. The wires were ligated with elastomerics into the brackets and each measurement was repeated once after religation. Two-way analysis of variance and t-test were conducted to compare the generated moments between wires at low- and high-torque brackets separately. The maximum moment generated by the 0.017 × 0.025 inch stainless steel archwire in the 0.018 inch brackets at +15 degrees ranged from 14.33 and 12.95 Nmm for the high- and low-torque brackets, respectively. The measured torque in the 0.022 inch brackets with the 0.019 × 0.025 inch stainless steel archwire was 9.32 and 6.48 Nmm, respectively. The recorded differences of maximum moments between the high- and low-torque series were statistically significant. High-torque brackets produced higher moments compared with low-torque brackets. Additionally, in both high- and low-torque configurations, the thicker 0.019 × 0.025 inch steel archwire in the 0.022 inch slot system generated lower moments in comparison with the 0.017 × 0.025 inch steel archwire in the 0.018 inch slot system.
Resumo:
The aim of this study was to assess the effect of bracket type on the labiopalatal moments generated by lingual and conventional brackets. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), In-Ovation L lingual brackets (DENTSPLY GAC), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on identical maxillary acrylic resin models with levelled and aligned teeth. Each model was mounted on the orthodontic measurement and simulation system and 10 0.0175 × 0.0175 TMA wires were used for each bracket type. The wire was ligated with elastomerics into the Incognito, STb, and conventional brackets and each measurement was repeated once after religation. A 15 degrees buccal root torque (+15 degrees) and then a 15 degrees palatal root torque (-15 degrees) were gradually applied to the right central incisor bracket. After each activation, the bracket returned to its initial position and the moments in the sagittal plane were recorded during these rotations of the bracket. One-way analysis of variance with post hoc multiple comparisons (Tukey test at 0.05 error rate) was conducted to assess the effect on bracket type on the generated moments. The magnitude of maximum moment at +15 degrees ranged 8.8, 8.2, 7.1, and 5.8 Nmm for the Incognito, STb, conventional Gemini, and the In-Ovation L brackets, respectively; similar values were recorded at -15 degrees: 8.6, 8.1, 7.0, and 5.7 Nmm, respectively. The recorded differences of maximum moments were statistically significant, except between the Incognito and STb brackets. Additionally, the torque angles were evaluated at which the crown torque fell well below the minimum levels of 5.0 Nmm, as well as the moment/torque ratio at the last part of the activation/deactivation curve, between 10 and 15 degrees. The lowest torque expression was observed at the self-ligating lingual brackets, followed by the conventional brackets. The Incognito and STb lingual brackets generated the highest moments.
Resumo:
The aim of this study was to assess the effect of bracket type on the labiopalatal forces and moments generated in the sagittal plane. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on three identical maxillary acrylic resin models, with a palatally displaced right lateral incisor. The transfer trays for the indirect bonding of the lingual brackets were constructed in certified laboratories. Each model was mounted on the orthodontic measurement and simulation system and ten 0.013 inch CuNiTi wires were used for each bracket type. The wire was ligated with elastomerics and each measurement was repeated once after re-ligation. The labiopalatal forces and the moments in the sagittal plane were recorded on the right lateral incisor. One-way analysis of variance and post hoc Scheffe pairwise comparisons were used to assess the effect on bracket type on the generated forces and moments. The magnitude of forces ranged from 1.62, 1.27, and 1.81 N for the STb, conventional, and Incognito brackets, respectively; the corresponding moments were 2.01, 1.45, and 2.19 N mm, respectively. Bracket type was a significant predictor of the generated forces (P < 0.001) and moments (P < 0.001). The produced forces were different among all three bracket types, whereas the generated moments differed between conventional and lingual brackets but not between lingual brackets.
Resumo:
OBJECTIVES To investigate the composition and the microstructural and mechanical characterization of three different types of lingual brackets. MATERIALS AND METHODS Incognito™ (3M Unitek), In-Ovation L (DENTSPLY GAC) and STb™ (Light Lingual System, ORMCO) lingual brackets were studied under the scanning electron microscope employing backscattered electron imaging and their elemental composition was analysed by energy-dispersive X-ray microanalysis. Additionally, Vickers hardness was assessed using a universal hardness-testing machine, and the indentation modulus was measured according to instrumented indentation test. Two-way analysis of variance was conducted employing bracket type and location (base and wing) as discriminating variable. Significant differences among groups were allocated by post hoc Student-Newman-Keuls multiple comparison analysis at 95% level of significance. RESULTS Three different phases were identified for Incognito and In-Ovation L bracket based on mean atomic number contrast. On the contrary, STb did not show mean atomic contrast areas and thus it is recognized as a single phase. Incognito is a one-piece bracket with the same structure in wing and base regions. Incognito consists mainly of noble metals while In-Ovation L and STb show similar formulations of ferrous alloys in wing and base regions. No significant differences were found between ferrous brackets in hardness and modulus values, but there were significant differences between wing and base regions. Incognito illustrated intermediate values with significant differences from base and wing values of ferrous brackets. CONCLUSIONS/IMPLICATIONS Significant differences exist in microstructure, elemental composition, and mechanical properties among the brackets tested; these might have a series of clinical implications during mechanotherapy.