54 resultados para bovine spine

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is the joint of the spine connecting vertebra to vertebra. It functions to transmit loading of the spine and give flexibility to the spine. It composes of three compartments: the innermost nucleus pulposus (NP) encompassing by the annulus fibrosus (AF), and two cartilaginous endplates connecting the NP and AF to the vertebral body on both sides. Discogenic pain possibly caused by degenerative intervertebral disc disease (DDD) and disc herniations has been identified as a major problem in our modern society. To study possible mechanisms of IVD degeneration, in vitro organ culture systems with live disc cells are highly appealing. The in vitro culture of intact bovine coccygeal IVDs has advanced to a relevant model system, which allows the study of mechano-biological aspects in a well-controlled physiological and mechanical environment. Bovine tail IVDs can be obtained relatively easy in higher numbers and are very similar to the human lumbar IVDs with respect to cell density, cell population and dimensions. However, previous bovine caudal IVD harvesting techniques retaining cartilaginous endplates and bony endplates failed after 1-2 days of culture since the nutrition pathways were obviously blocked by clotted blood. IVDs are the biggest avascular organs, thus, the nutrients to the cells in the NP are solely dependent on diffusion via the capillary buds from the adjacent vertebral body. Presence of bone debris and clotted blood on the endplate surfaces can hinder nutrient diffusion into the center of the disc and compromise cell viability. Our group established a relatively quick protocol to "crack"-out the IVDs from the tail with a low risk for contamination. We are able to permeabilize the freshly-cut bony endplate surfaces by using a surgical jet lavage system, which removes the blood clots and cutting debris and very efficiently reopens the nutrition diffusion pathway to the center of the IVD. The presence of growth plates on both sides of the vertebral bone has to be avoided and to be removed prior to culture. In this video, we outline the crucial steps during preparation and demonstrate the key to a successful organ culture maintaining high cell viability for 14 days under free swelling culture. The culture time could be extended when appropriate mechanical environment can be maintained by using mechanical loading bioreactor. The technique demonstrated here can be extended to other animal species such as porcine, ovine and leporine caudal and lumbar IVD isolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Design. In vitro study to develop an intervertebral disc degeneration (IDD) organ culture model, using coccygeal bovine intervertebral discs (IVDs) and injection of proteolytic enzymes MMP-3, ADAMTS-4 and HTRA1.Objective. This study aimed to develop an in-vitro model of enzyme-mediated IDD to mimic the clinical outcome in humans for investigation of therapeutic treatment options.Summary of Background Data. Bovine IVDs are comparable to human IVDs in terms of cell composition and biomechanical behavior. Researchers injected papain and trypsin into them to create an IDD model with a degenerated nucleus pulposus (NP) area. They achieved macroscopic cavities as well as a loss of glycosaminoglycans (GAGs). However, none of these enzymes are clinically relevant.Methods. Bovine IVDs were harvested maintaining the endplates. Active forms of MMP-3, ADAMTS-4 and HTRA1 were injected at a dose of 10μg/ml each. Phosphate buffered saline (PBS) was injected as a control. Discs were cultured for 8 days and loaded diurnally (day 1 to day 4 with 0.4 MPa for 16 h) and left under free swelling condition from day 4 to day 8 to avoid expected artifacts due to dehydration of the NP. Outcome parameters included disc height, metabolic cell activity, DNA content, glycosaminoglycan (GAG) content, total collagen content, relative gene expression and histological investigation.Results. The mean metabolic cell activity was significantly lower in the NP area of discs injected with ADAMTS-4 compared to the day 0 control discs. Disc height was decreased following injection with HTRA1, and was significantly correlated with changes in GAG/DNA of the NP tissue. Total collagen content tended to be lower in groups injected with ADAMTS4 and MMP-3.Conclusion. MMP-3, ADAMTS-4 and HTRA1 neither provoked visible matrix degradation nor major shifts in gene expression. However, cell activity was significantly reduced and HTRA1 induced loss of disc height which positively correlated with changes in GAG/DNA content. The use of higher doses of these enzymes or a combination thereof may therefore be necessary to induce disc degeneration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Question: The intervertebral disc (IVD) has a limited regenerative potential and low back pain represents a leading cause of disability [1]. IVD repair strategies require an appropriate cell source that is able to regenerate the damaged tissue such as progenitor stem cells. Recently, progenitor cells that are positive for the angiopoietin re- ceptor (Tie2) in the nucleus pulposus were identified [2]. Here we isolated primary cells from bovine IVD and sorted bovine nucleus pulposus progenitor cells (NPPC) for the marker Tie2. Furthermorewe tested whether Tie2 expressing cells can differentiate into os- teogenic and adipogenic lineages in vitro. Methods: NP cells were obtained from 1 year old bovine tails by sequential digestion with pronase for 1 h and collagenase over- night. Sorted Tie2- and Tie2+ cells were cultured in osteogenic and adipogenic medium for 3 weeks. The formed cell layers from both subpopulations were stained for calcium deposition and fat droplets. Colony forming units were prepared for both cell sus- pensions in methylcellulose-based medium and formed colonies ([10 cells) were analyzed macroscopically after 8 days. Results: After 3 weeks of culture, sorted Tie2+ cells were able to differentiate into osteocytes and adipocytes as characterized by cal- cium deposition and fat droplet formation. By contrast, Tie2- cells generated a weak staining for calcium and no fat droplets were ob- tained (Fig. 1). Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies, however with different morphologies. The colonies formed from Tie2+ cells were spheroid in shape whereas those from Tie2- cells were spread and fibroblastic. Conclusion: Our data showed that Tie2+ cells of the nucleus pul- posus cells are progenitor-like cells that are able to differentiate into osteogenic and adipogenic lineages. Sorting of NPPC for Tie2 may represent a promising strategy with the potential to be used in the clinics for treatment of intervertebral disc damage. References 1. Freemont AJ (2009) The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology (Oxford) 48:5–10 2. Sakai D, Nakamura Y, Nakai T et al (2012) Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 3:1264 Acknowledgments: This project was funded by two projects of the Swiss National Science Foundation grant number #IZK0Z3_154384 and #310030_153411.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Question: Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and de- generation. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM) [1]. Further studies showed that growth factors from the transforming growth factor (TGF) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC) [2]. Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods: Bovine IVD cells were isolated by pronase/collagenase II overnight digestion. After monolayer expansion up to passage 3, cells were transfected with the plasmid pGDF6 (RG211366, Origene, SF) or with green fluorescence protein (GFP) control using the NeonÒ transfection system (Invitrogen, Basel), both equipped with a Cy- tomegalovirus (CMV) promotor to induce over-expression. We tested a range of yet unpublished parameters for each of the primary disc cells to optimize efficiency. To test a non-viral gene therapy applied directly to 3D whole organ culture, bovine IVDs were harvested from fresh tails obtained from the abattoir within 5 h post-mortem [3]. Discs were then pre-incubated for 24 h in high glucose Dulbecco’s Modified Eagle Medium and 5 % fetal calf serum. Each disc was transfected by injection of 5 lg of plasmid GDF6 (Origene, RG211366) into the center by 25G needle and using Hamilton sy- ringe. Electroporation was performed using 2-needle array electrode or tweezertrodes; 8 pulses at 200mv/cm with an interval of 10 ms were applied using ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) (Fig. 1). After transfection discs were cultured for 72 h to allow expression of GFP or GDF6. Discs were then fixed, cryosectioned and analysed by immunofluorescence against GDF6. Results: We successfully transfected bovine NP and AF cells in monolayer culture with the two plasmids using a 1,400 V, 20 ms and 2 pulses with a *25 % efficiency using 0.15 M cells and 3 lg DNA (Fig. 1). Organ IVD culture transfection revealed GFP6 positive staining in the centre of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GFP posi- tive cells. Conclusions: We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgments: This study was supported by the Lindenhof Foundation ‘‘Forschung und Lehre’’ (Project no. 13-02-F). References 1. Roughly PJ (2004) Spine (Phila) 29:2691–2699 2. 3. Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Arthritis Res Ther 16:R67 Chan SC, Gantenbein-Ritter B (2012) J Vis Exp 60(60):e3490

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and degeneration. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM).1 Further studies showed that growth factors from transforming growth factor β (TGFβ) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC).2 Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods. Bovine nucleus pulposus (bNPC) and annulus fibrosus cells (bAFC) were harvested from bovine coccygeal IVD. Primary cells were then electroporized with plasmid GDF6 (Origene, vector RG211366) by optimizing parameters using the Neon Transfection system (Life Technologies, Basel). After transfection, cells were cultured in 2D monolayer or 3D alginate beads for 7, 14 or 21 days. Transfection efficiency of pGDF6 was analyzed by immunohistochemistry and fluorescent microscopy. Cell phenotype was quantified by real-time RT-PCR. To test a non-viral gene therapy applied directly to 3D whole organ culture, coccygeal bovine IVDs were harvested as previously described. Bovine IVDs were transfected by injection of plasmid GDF6 into the center. Electroporation was performed with ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) using 2-needle array electrode or tweezertrodes. 72 h after tranfection discs were fixed and cryosectioned and analyzed by immunofluorescence against GDF6. Results. RT-PCR and immunohistochemistry confirmed up-regulation of GFP and GDF6 in the primary bNPC/bAFC culture. The GFP-tagged GDF6 protein, however, was not visible, possibly due to failure of dimer formation as a result of fusion structure. Organ IVD culture transfection revealed GDF6 positive staining in the center of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GDF6 positive cells. Conclusion. Non-viral transfection is an appealing approach for gene therapy as it fulfills the translational safety aspects of transiency and lacks the toxic effects of viral transduction. We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgements. This project was funded by the Lindenhof Foundation (Funds “Research & Teaching”) Project no. 13-02-F. The imaging part of this study was performed with the facility of the Microscopy Imaging Center (MIC), University of Bern. References. Roughly PJ (2004): Spine (Phila), 29:2691-2699 Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014), Arthritis Research & Therapy, 16:R67

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study is to evaluate the clinical and histologic healing of deep intrabony defects treated with guided tissue regeneration (GTR) with a collagen membrane from bovine pericardium and implantation of granular bovine bone biomaterial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The aim of the present study was to histologically evaluate and compare a new prototype collagen type I/III-containing equine- (EB) and a bovine- (BB) derived cancellous bone block in a dog model. MATERIALS AND METHODS: Four standardized box-shaped defects were bilaterally created at the buccal aspect of the alveolar ridge in the lower jaws of five beagle dogs and randomly allocated to either EB or BB. Each experimental site was covered by a native (non-crosslinked) collagen membrane and left to heal in a submerged position for 12 weeks. Dissected blocks were processed for semi-/and quantitative analyses. RESULTS: Both groups had no adverse clinical or histopathological events (i.e. inflammatory/foreign body reactions). BB specimens revealed no signs of biodegradation and were commonly embedded in a fibrous connective tissue. New bone formation and bony graft integration were minimal. In contrast, EB specimens were characterized by a significantly increased cell (i.e. osteoclasts and multinucleated giant cells)-mediated degradation of the graft material (P<0.001). The amount and extent of bone ingrowth was consistently higher in all EB specimens, but failed to reach statistical significance in comparison with the BB group (P>0.05). CONCLUSIONS: It was concluded that the application of EB may not be associated with an improved bone formation than BB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the ATP-binding cassette (ABC) transporters play a pivotal role in cellular lipid efflux. To identify candidate cholesterol transporters implicated in lipid homeostasis and mammary gland (MG) physiology, we compared expression and localization of ABCA1, ABCG1, and ABCA7 and their regulatory genes in mammary tissues of different species during the pregnancy-lactation cycle. Murine and bovine mammary glands (MGs) were investigated during different functional stages. The abundance of mRNAs was determined by quantitative RT-PCR. Furthermore, transporter proteins were localized in murine, bovine, and human MGs by immunohistochemistry. In the murine MG, ABCA1 mRNA abundance was elevated during nonlactating compared with lactating stages, whereas ABCA7 and ABCA1 mRNA profiles were not altered. In the bovine MG, ABCA1, ABCG1, and ABCA7 mRNAs abundances were increased during nonlactating stages compared with lactation. Furthermore, associations between mRNA levels of transporters and their regulatory genes LXRalpha, PPARgamma, and SREBPs were found. ABCA1, ABCG1, and ABCA7 proteins were localized in glandular MG epithelial cells (MEC) during lactation, whereas during nonlactating stages, depending on species, the proteins showed distinct localization patterns in MEC and adipocytes. Our results demonstrate that ABCA1, ABCG1, and ABCA7 are differentially expressed between lactation and nonlactating stages and in association with regulatory genes. Combined expression and localization data suggest that the selected cholesterol transporters are universal MG transporters involved in transport and storage of cholesterol and in lipid homeostasis of MEC. Because of the species-specific expression patterns of transporters in mammary tissue, mechanisms of cholesterol homeostasis seem to be differentially regulated between species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the ischial spine sign (ISS) has been advocated to detect acetabular retroversion, it is unknown whether the sign is valid on anteroposterior (AP) pelvic radiographs with tilted or rotated pelves. We therefore evaluated reliability of the ISS as a tool for diagnosing acetabular retroversion in the presence of considerable pelvic tilt and/or malrotation. We obtained radiographs of 20 cadaver pelves in 19 different malorientations resulting in 380 pelvis images (760 hips) for evaluation. In addition, 129 clinical radiographs of patients' hips that had varying pelvis orientations were reviewed. We found an overall sensitivity of 81% (90%), specificity of 70% (71%), positive predictive value of 77% (80.7%), and negative predictive value of 75% (85%) in the cadaver (patient) hips. Our data suggest the ISS is a valid tool for diagnosing acetabular retroversion on plain radiographs taken using a standardized technique regardless of the degree of pelvic tilt and rotation.