21 resultados para boron dilution
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.
Resumo:
We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.
Resumo:
Coat color dilution in several breeds of dog is characterized by a specific pigmentation phenotype and sometimes accompanied by hair loss and recurrent skin inflammation, the so-called color dilution alopecia or black hair follicular dysplasia. Coat color dilution (d) is inherited as a Mendelian autosomal recessive trait. In a previous study, MLPH polymorphisms showed perfect cosegregation with the dilute phenotype within breeds. However, different dilute haplotypes were found in different breeds, and no single polymorphism was identified in the coding sequence that was likely to be causative for the dilute phenotype. We resequenced the 5'-region of the canine MLPH gene and identified a strong candidate single nucleotide polymorphism within the nontranslated exon 1, which showed perfect association to the dilute phenotype in 65 dilute dogs from 7 different breeds. The A/G polymorphism is located at the last nucleotide of exon 1 and the mutant A-allele is predicted to reduce splicing efficiency 8-fold. An MLPH mRNA expression study using quantitative reverse transcriptase-polymerase chain reaction confirmed that dd animals had only about approximately 25% of the MLPH transcript compared with DD animals. These results provide preliminary evidence that the reported regulatory MLPH mutation might represent a causal mutation for coat color dilution in dogs.
Resumo:
Although hypoalbuminaemia after injury may result from increased vascular permeability, dilution secondary to crystalloid infusions may contribute significantly. In this double-blind crossover study, the effects of bolus infusions of crystalloids on serum albumin, haematocrit, serum and urinary biochemistry and bioelectrical impedance analysis were measured in healthy subjects. Ten male volunteers received 2-litre infusions of 0.9% (w/v) saline or 5% (w/v) dextrose over 1 h; infusions were carried out on separate occasions, in random order. Weight, haemoglobin, serum albumin, serum and urinary biochemistry and bioelectrical impedance were measured pre-infusion and hourly for 6 h. The serum albumin concentration fell in all subjects (20% after saline; 16% after dextrose) by more than could be explained by dilution alone. This fall lasted more than 6 h after saline infusion, but values had returned to baseline 1 h after the end of the dextrose infusion. Changes in haematocrit and haemoglobin were less pronounced (7.5% after saline; 6.5% after dextrose). Whereas all the water from dextrose was excreted by 2 h after completion of the infusion, only one-third of the sodium and water from the saline had been excreted by 6 h, explaining its persistent diluting effect. Impedances rose after dextrose and fell after saline (P<0.001). Subjects voided more urine (means 1663 and 563 ml respectively) of lower osmolality (means 129 and 630 mOsm/kg respectively) and sodium content (means 26 and 95 mmol respectively) after dextrose than after saline (P<0.001). While an excess water load is excreted rapidly, an excess sodium load is excreted very slowly, even in normal subjects, and causes persistent dilution of haematocrit and serum albumin. The greater than expected change in serum albumin concentration when compared with that of haemoglobin suggests that, while dilution is responsible for the latter, redistribution also has a role in the former. Changes in bioelectrical impedance may reflect the electrolyte content rather than the volume of the infusate, and may be unreliable for clinical purposes.
Resumo:
Prompt gamma activation analysis (PGAA) is especially sensitive for elements with high neutron-capture cross sections, like boron, which can be detected down to a level of ng/g. However, if it is a major component, the high count rate from its signal will distort the spectra, making the evaluation difficult. A lead attenuator was introduced in front of the HPGe-detector to reduce low-energy gamma radiation and specifically the boron gamma rays reaching the detector, whose thickness was found to be optimal at 10 mm. Detection efficiencies with and without the lead attenuator were compared, and it was shown that the dynamic range of the PGAA technique was significantly increased. The method was verified with the analyses of stoichiometric compounds: TiB2, NiB, PVC, Alborex, and Alborite.
Resumo:
In situ diffusion experiments are performed in geological formations at underground research laboratories to overcome the limitations of laboratory diffusion experiments and investigate scale effects. Tracer concentrations are monitored at the injection interval during the experiment (dilution data) and measured from host rock samples around the injection interval at the end of the experiment (overcoring data). Diffusion and sorption parameters are derived from the inverse numerical modeling of the measured tracer data. The identifiability and the uncertainties of tritium and Na-22(+) diffusion and sorption parameters are studied here by synthetic experiments having the same characteristics as the in situ diffusion and retention (DR) experiment performed on Opalinus Clay. Contrary to previous identifiability analyses of in situ diffusion experiments, which used either dilution or overcoring data at approximate locations, our analysis of the parameter identifiability relies simultaneously on dilution and overcoring data, accounts for the actual position of the overcoring samples in the claystone, uses realistic values of the standard deviation of the measurement errors, relies on model identification criteria to select the most appropriate hypothesis about the existence of a borehole disturbed zone and addresses the effect of errors in the location of the sampling profiles. The simultaneous use of dilution and overcoring data provides accurate parameter estimates in the presence of measurement errors, allows the identification of the right hypothesis about the borehole disturbed zone and diminishes other model uncertainties such as those caused by errors in the volume of the circulation system and the effective diffusion coefficient of the filter. The proper interpretation of the experiment requires the right hypothesis about the borehole disturbed zone. A wrong assumption leads to large estimation errors. The use of model identification criteria helps in the selection of the best model. Small errors in the depth of the overcoring samples lead to large parameter estimation errors. Therefore, attention should be paid to minimize the errors in positioning the depth of the samples. The results of the identifiability analysis do not depend on the particular realization of random numbers. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Based on a dye tracer experiment in a sand tank we addressed the problem of local dispersion of conservative tracers in the unsaturated zone. The sand bedding was designed to have a defined spatial heterogeneity with a strong anisotropy. We estimated the parameters that characterize the local dispersion and dilution from concentration maps of a high spatial and temporal resolution obtained by image analysis. The plume spreading and mixing behavior was quantified on the basis of the coefficient of variation of the concentration and of the dilution index. The heterogeneous structure modified the flow pattern depending on water saturation. The shape of the tracer plumes revealed the structural signature of the sand bedding at low saturation only. In this case pronounced preferential flow was observed. At higher flow rates the structure remained hidden by a spatially almost homogeneous behavior of the plumes. In this context, we mainly discuss the mechanism of re-distributing a finite mass of inert solutes over a large volume, due to macro- and micro-heterogeneities of the structure. (C) 2001 Elsevier Science Ltd. AU rights reserved.