3 resultados para biomarcadores y osteoporosis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Osteoporosis has been recognized as an important side effect of long-term and of pulsed steroid application after heart transplantation. METHODS: In June 1989 a prospective clinical trial was started to study bone demineralization by quantitative computed tomographic scan. All patients received vitamin D and calcium. In group I (n = 30) synthetic calcitonin (40 Medical Research Council Standard Units subcutaneously per day was administered in 14-day cycles, whereas group II patients (n = 31) received a placebo preparation. Repeat trabecular and cortical quantitative computed tomographic scans of the thoracic (T12) and lumbar spine (L1, L2, L3) were obtained within 48 weeks after heart transplantation. RESULTS: Expressed as the means of T12, L1, L2, and L3, trabecular bone density decreased significantly from 100+/-24 to 79+/-29 mg/mL within 3 weeks after heart transplantation, followed by a further reduction to 67+/-29 mg/mL after 3 months in the calcitonin group. The values for cortical bone density decreased significantly from 229+/-37 to 202+/-40 mg/mL (calcitonin) 3 weeks after heart transplantation. Comparable results were obtained in the placebo group. In both groups bone density remained stable thereafter. Intergroup differences were not of statistical significance. CONCLUSIONS: In heart transplant recipients progressive trabecular bone demineralization is limited to the first 3 postoperative months. Thereafter, bone density remained stable. A positive effect of synthetic calcitonin in addition to prophylactic calcium and vitamin D application could not be proved by repeat quantitative computed tomography.
Resumo:
Dual energy X-ray absorptiometry (DXA) is widely accepted as the reference method for diagnosis and monitoring of osteoporosis and for assessment of fracture risk, especially at hip. However, axial-DXA is not suitable for mass screening, because it is usually confined to specialized centers. We propose a two-step diagnostic approach to postmenopausal osteoporosis: the first step, using an inexpensive, widely available screening technique, aims at risk stratification in postmenopausal women; the second step, DXA of spine and hip is applied only to potentially osteoporotic women preselected on the basis of the screening measurement. In a group of 110 healthy postmenopausal woman, the capability of various peripheral bone measurement techniques to predict osteoporosis at spine and/or hip (T-score < -2.5SD using DXA) was tested using receiver operating characteristic (ROC) curves: radiographic absorptiometry of phalanges (RA), ultrasonometry at calcaneus (QUS. CALC), tibia (SOS.TIB), and phalanges (SOS.PHAL). Thirty-three women had osteoporosis at spine and/or hip with DXA. Areas under the ROC curves were 0.84 for RA, 0.83 for QUS.CALC, 0.77 for SOS.PHAL (p < 0.04 vs RA) and 0.74 for SOS.TIB (p < 0.02 vs RA and p = 0.05 vs QUS.CALC). For levels of sensitivity of 90%, the respective specificities were 67% (RA), 64% (QUS.CALC), 48% (SOS.PHAL), and 39% (SOS.TIB). In a cost-effective two-step, the price of the first step should not exceed 54% (RA), 51% (QUS.CALC), 42% (SOS.PHAL), and 25% (SOS.TIB). In conclusion, RA, QUS.CALC, SOS.PHAL, and SOS.TIB may be useful to preselect postmenopausal women in whom axial DXA is indicated to confirm/exclude osteoporosis at spine or hip.
Resumo:
UNLABELLED The FREEDOM study and its Extension provide long-term information about the effects of denosumab for the treatment of postmenopausal osteoporosis. Treatment for up to 8 years was associated with persistent reduction of bone turnover, continued increases in bone mineral density, low fracture incidence, and a favorable benefit/risk profile. INTRODUCTION This study aims to report the results through year 5 of the FREEDOM Extension study, representing up to 8 years of continued denosumab treatment in postmenopausal women with osteoporosis. METHODS Women who completed the 3-year FREEDOM study were eligible to enter the 7-year open-label FREEDOM Extension in which all participants are scheduled to receive denosumab, since placebo assignment was discontinued for ethical reasons. A total of 4550 women enrolled in the Extension (2343 long-term; 2207 cross-over). In this analysis, women in the long-term and cross-over groups received denosumab for up to 8 and 5 years, respectively. RESULTS Throughout the Extension, sustained reduction of bone turnover markers (BTMs) was observed in both groups. In the long-term group, mean bone mineral density (BMD) continued to increase significantly at each time point measured, for cumulative 8-year gains of 18.4 and 8.3 % at the lumbar spine and total hip, respectively. In the cross-over group, mean BMD increased significantly from the Extension baseline for 5-year cumulative gains of 13.1 and 6.2 % at the lumbar spine and total hip, respectively. The yearly incidence of new vertebral and nonvertebral fractures remained low in both groups. The incidence of adverse and serious adverse events did not increase over time. Through Extension year 5, eight events of osteonecrosis of the jaw and two events of atypical femoral fracture were confirmed. CONCLUSIONS Denosumab treatment for up to 8 years was associated with persistent reductions of BTMs, continued BMD gains, low fracture incidence, and a consistent safety profile.