6 resultados para biological characteristics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Prognostic markers and molecular breast cancer subtypes reflect underlying biological tumor behavior and are important for patient management. Compared to Western countries, women in North Africa are less likely to be prognosticated and treated based on well-characterized markers such as the estrogen receptor (ER), progesterone receptor (PR) and Her2. We conducted this study to determine the prevalence of breast cancer molecular subtypes in the North African country of Egypt as a measure of underlying biological characteristics driving tumor manifestations. Methods To determine molecular subtypes we characterized over 200 tumor specimens obtained from Egypt by performing ER, PR, Her2, CK5/6, EGFR and Ki67 immunohistochemistry. Results Our study demonstrated that the Luminal A subtype, associated with favorable prognosis, was found in nearly 45% of cases examined. However, the basal-like subtype, associated with poor prognosis, was found in 11% of cases. These findings are in sharp contrast to other parts of Africa in which the basal-like subtype is over-represented. Conclusions Egyptians appear to have favorable underlying biology, albeit having advanced disease at diagnosis. These data suggest that Egyptians would largely profit from early detection of their disease. Intervention at the public health level, including education on the benefits of early detection is necessary and would likely have tremendous impact on breast cancer outcome in Egypt.
Resumo:
Analyses of neutrophil death mechanisms have revealed many similarities with other cell types; however, a few important molecular features make these cells unique executors of cell death mechanisms. For instance, in order to fight invading pathogens, neutrophils possess a potent machinery to produce reactive oxygen species (ROS), the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Evidence is emerging that these ROS are crucial in the execution of most neutrophil cell death mechanisms. Likewise, neutrophils exhibit many diverse granules that are packed with cytotoxic mediators. Of those, cathepsins were recently shown to activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) family members and caspases, thus acting on apoptosis regulators. Moreover, neutrophils have few mitochondria, which hardly participate in ATP synthesis, as neutrophils gain energy from glycolysis. In spite of relatively low levels of cytochrome c in these cells, the mitochondrial death pathway is functional. In addition to these pecularities defining neutrophil death pathways, neutrophils are terminally differentiated cells, hence they do not divide but undergo apoptosis shortly after maturation. The initial trigger of this spontaneous apoptosis remains to be determined, but may result from low transcription and translation activities in mature neutrophils. Due to the unique biological characteristics of neutrophils, pharmacological intervention of inflammation has revealed unexpected and sometimes disappointing results when neutrophils were among the prime target cells during therapy. In this study, we review the current and emerging models of neutrophil cell death mechanisms with a focus on neutrophil peculiarities.
Resumo:
Principles and guidelines are presented to ensure a solid scientific standard of papers dealing with the taxonomy of taxa of Pasteurellaceae Pohl 1981. The classification of the Pasteurellaceae is in principle based on a polyphasic approach. DNA sequencing of certain genes is very important for defining the borders of a taxon. However, the characteristics that are common to all members of the taxon and which might be helpful for separating it from related taxa must also be identified. Descriptions have to be based on as many strains as possible (inclusion of at least five strains is highly desirable), representing different sources with respect to geography and ecology, to allow proper characterization both phenotypically and genotypically, to establish the extent of diversity of the cluster to be named. A genus must be monophyletic based on 16S rRNA gene sequence-based phylogenetic analysis. Only in very rare cases is it acceptable that monophyly can not be achieved by 16S rRNA gene sequence comparison. Recently, the monophyly of genera has been confirmed by sequence comparison of housekeeping genes. In principle, a new genus should be recognized by a distinct phenotype, and characters that separate the new genus from its neighbours should be given clearly. Due to the overall importance of accurate classification of species, at least two genotypic methods are needed to show coherence and for separation at the species level. The main criterion for the classification of a novel species is that it forms a monophyletic group based on 16S rRNA gene sequence-based phylogenetic analysis. However, some groups might also include closely related species. In these cases, more sensitive tools for genetic recognition of species should be applied, such as DNA-DNA hybridizations. The comparison of housekeeping gene sequences has recently been used for genotypic definition of species. In order to separate species, phenotypic characters must also be identified to recognize them, and at least two phenotypic differences from existing species should be identified if possible. We recommend the use of the subspecies category only for subgroups associated with disease or similar biological characteristics. At the subspecies level, the genotypic groups must always be nested within the boundaries of an existing species. Phenotypic cohesion must be documented at the subspecies level and separation between subspecies and related species must be fully documented, as well as association with particular disease and host. An overview of methods previously used to characterize isolates of the Pasteurellaceae has been given. Genotypic and phenotypic methods are separated in relation to tests for investigating diversity and cohesion and to separate taxa at the level of genus as well as species and subspecies.
Resumo:
Immunization with Plasmodium sporozoites that have been attenuated by gamma-irradiation or specific genetic modification can induce protective immunity against subsequent malaria infection. The mechanism of protection is only known for radiation-attenuated sporozoites, involving cell-mediated and humoral immune responses invoked by infected hepatocytes cells that contain long-lived, partially developed parasites. Here we analyzed sporozoites of Plasmodium berghei that are deficient in P36p (p36p(-)), a member of the P48/45 family of surface proteins. P36p plays no role in the ability of sporozoites to infect and traverse hepatocytes, but p36p(-) sporozoites abort during development within the hepatocyte. Immunization with p36p(-) sporozoites results in a protective immunity against subsequent challenge with infectious wild-type sporozoites, another example of a specifically genetically attenuated sporozoite (GAS) conferring protective immunity. Comparison of biological characteristics of p36p(-) sporozoites with radiation-attenuated sporozoites demonstrates that liver cells infected with p36p(-) sporozoites disappear rapidly as a result of apoptosis of host cells that may potentiate the immune response. Such knowledge of the biological characteristics of GAS and their evoked immune responses are essential for further investigation of the utility of an optimized GAS-based malaria vaccine.
Resumo:
Although rare, stent thrombosis remains a severe complication after stent implantation owing to its high morbidity and mortality. Since the introduction of drug-eluting stents (DES), most interventional centers have noted stent thrombosis up to 3 years after implantation, a complication rarely seen with bare-metal stents. Some data from large registries and meta-analyses of randomized trials indicate a higher risk for DES thrombosis, whereas others suggest an absence of such a risk. Several factors are associated with an increased risk of stent thrombosis, including the procedure itself (stent malapposition and/or underexpansion, number of implanted stents, stent length, persistent slow coronary blood flow, and dissections), patient and lesion characteristics, stent design, and premature cessation of antiplatelet drugs. Drugs released from DES exert distinct biological effects, such as activation of signal transduction pathways and inhibition of cell proliferation. As a result, although primarily aimed at preventing vascular smooth muscle cell proliferation and migration (ie, key factors in the development of restenosis), they also impair reendothelialization, which leads to delayed arterial healing, and induce tissue factor expression, which results in a prothrombogenic environment. In the same way, polymers used to load these drugs have been associated with DES thrombosis. Finally, DES impair endothelial function of the coronary artery distal to the stent, which potentially promotes the risk of ischemia and coronary occlusion. Although several reports raise the possibility of a substantially higher risk of stent thrombosis in DES, evidence remains inconclusive; as a consequence, both large-scale and long-term clinical trials, as well as further mechanistic studies, are needed. The present review focuses on the pathophysiological mechanisms and pathological findings of stent thrombosis in DES.
Resumo:
The vast majority of chronic myeloid leukemia patients express a BCR-ABL1 fusion gene mRNA encoding a 210 kDa tyrosine kinase which promotes leukemic transformation. A possible differential impact of the corresponding BCR-ABL1 transcript variants e13a2 ("b2a2") and e14a2 ("b3a2") on disease phenotype and outcome is still a subject of debate. A total of 1105 newly diagnosed imatinib-treated patients were analyzed according to transcript type at diagnosis (e13a2, n=451; e14a2, n=496; e13a2+e14a2, n=158). No differences regarding age, sex, or Euro risk score were observed. A significant difference was found between e13a2 and e14a2 when comparing white blood cells (88 vs. 65 × 10(9)/L, respectively; P<0.001) and platelets (296 vs. 430 × 10(9)/L, respectively; P<0.001) at diagnosis, indicating a distinct disease phenotype. No significant difference was observed regarding other hematologic features, including spleen size and hematologic adverse events, during imatinib-based therapies. Cumulative molecular response was inferior in e13a2 patients (P=0.002 for major molecular response; P<0.001 for MR4). No difference was observed with regard to cytogenetic response and overall survival. In conclusion, e13a2 and e14a2 chronic myeloid leukemia seem to represent distinct biological entities. However, clinical outcome under imatinib treatment was comparable and no risk prediction can be made according to e13a2 versus e14a2 BCR-ABL1 transcript type at diagnosis. (clinicaltrials.gov identifier:00055874).