4 resultados para biological assays

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1 protein into a recombinant vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, such as RNA metabolism, microRNA biogenesis and DNA repair. However, the precise role of FUS protein remains unclear. Recently, FUS has been linked to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS and that specifically depletes the protein. In order to characterize this cell line, we have performed a whole transcriptome analysis by RNA deep sequencing. Preliminary results show that FUS depletion affects both expression and alternative splicing levels of several RNAs. When FUS is depleted we observed 330 downregulated and 81 upregulated genes. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, to further characterize the FUS-depleted cell line we have performed growth proliferation and survival assays. From these experiments emerge that FUS-depleted cells display growth proliferation alteration. In order to explain this observation, we have tested different hypothesis (e.g. apoptosis, senescence or slow-down growth). We observed that FUS-depleted cells growth slower than controls. Currently, we are looking for putative candidate targets causing this phenotype. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An imminent food crisis reinforces the need for novel strategies to increase crop yields worldwide. Effective control of pest insects should be part of such strategies, preferentially with reduced negative impact on the environment and optimal protection and utilization of existing biodiversity. Enhancing the presence and efficacy of native biological control agents could be one such strategy. Plant strengthener is a generic term for several commercially available compounds or mixtures of compounds that can be applied to cultivated plants in order to ‘boost their vigour, resilience and performance’. Studies into the consequences of boosting plant resistance against pests and diseases on plant volatiles have found a surprising and dramatic increase in the plants' attractiveness to parasitic wasps. Here, we summarize the results from these studies and present new results from assays that illustrate the great potential of two commercially available resistance elicitors. We argue that plant strengtheners may currently be the best option to enhance the attractiveness of cultivated plants to biological control agents. Other options, such as the genetic manipulation of the release of specific volatiles may offer future solutions, but in most systems, we still miss fundamental knowledge on which key attractants should be targeted for this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION The gastrin-releasing peptide receptor (GRPR) was shown to be expressed with high density on several types of cancers. Radiolabeled peptides for imaging and targeted radionuclide therapy have been developed. In this study, we evaluated the potential of statine-based bombesin antagonists, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) through oligoethyleneglycol spacers, labeled with (177)Lu and we determined the effect of polyethyleneglycol (PEG) spacer length on in vitro and in vivo properties. METHODS The bombesin antagonists were synthesized on solid phase using Fmoc chemistry; the spacers Fmoc-dPEGx-OH (x=2, 4, 6 and 12) and the DOTA(tBu)3 were coupled using a standard procedure. The peptides were labeled with (177)Lu and evaluated in vitro (lipophilicity, serum stability, internalization and binding affinity assays). Biodistribution studies were performed in PC-3 tumor-bearing nude mice. RESULTS The solid-phase synthesis was straightforward with an overall yield ranging from 30% to 35% based on the first Fmoc cleavage. The hydrophilicity increased with spacer length (logD: -1.95 vs -2.22 of PEG2 and PEG12 analogs, respectively). There is a tendency of increased serum stability by increasing the spacer length (T1/2=246±4 and 584±20 for PEG2 and PEG6 analogs, respectively) which seems to reverse with the PEG12 analog. The IC50 values are similar with the only significant difference of the PEG12 analog. The (177)Lu-labeled PEG4 and PEG6 conjugates showed similar pharmacokinetic with high tumor uptake and excellent tumor-to-kidney ratios (7.8 and 9.7 at 4h for the PEG4 and PEG6 derivatives, respectively). The pancreas uptake was relatively high at 1h but it shows fast washout (0.46%±0.02% IA/g and 0.29%±0.08% IA/g already at 4h). CONCLUSION Among all the studied analogs the PEG4 and PEG6 showed significantly better properties. The very high tumor-to-non-target organ ratios, in particular tumor-to-kidney ratios, already at early time point will be important in regard to safety concerning kidney toxicity.