21 resultados para biogeochemical constituents
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Abstract We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and costeffective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85– 0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.
Resumo:
Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.
Resumo:
Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C. dissolved inorganic C and SO(4) concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of clay surfaces.
Resumo:
The liver has an important role in metabolic regulation and control of the somatotropic axis to adapt successfully to physiological and environmental changes in dairy cows. The aim of this study was to investigate the adaptation to negative energy balance (NEB) at parturition and to a deliberately induced NEB by feed restriction at 100 days in milk. The hepatic gene expression and the endocrine system of the somatotropic axis and related parameters were compared between the early and late NEB period. Fifty multiparous cows were subjected to 3 periods (1=early lactation up to 12 wk postpartum, 2=feed restriction for 3 wk beginning at around 100 days in milk with a feed-restricted and a control group, and 3=subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, plasma growth hormone reached a maximum in early lactation, whereas insulin-like growth factor-I (IGF-I), leptin, the thyroid hormones, insulin, and the revised quantitative insulin sensitivity check index increased gradually after a nadir in early lactation. Three days after parturition, hepatic mRNA abundance of growth hormone receptor 1A, IGF-I, IGF-I receptor and IGF-binding protein-3 (IGFBP-3) were decreased, whereas mRNA of IGFBP-1 and -2 and insulin receptor were upregulated as compared with wk 3 antepartum. During period 2, feed-restricted cows showed decreased plasma concentrations of IGF-I and leptin compared with those of control cows. The revised quantitative insulin sensitivity check index was lower for feed-restricted cows (period 2) than for control cows. Compared with the NEB in period 1, the changes due to the deliberately induced NEB (period 2) in hormones were less pronounced. At the end of the 3-wk feed restriction, the mRNA abundance of IGF-I, IGFBP-1, -2, -3, and insulin receptor was increased as compared with the control group. The different effects of energy deficiency at the 2 stages in lactation show that the endocrine regulation changes qualitatively and quantitatively during the course of lactation.
Resumo:
The Cannabis plant and its products consist of an enormous variety of chemicals. Some of the 483 compounds identified are unique to Cannabis, for example, the more than 60 cannabinoids, whereas the terpenes, with about 140 members forming the most abundant class, are widespread in the plant kingdom. The term “cannabinoids” [note: “ ” represents a group of C21 terpenophenolic compounds found until now uniquely in Cannabis sativa L. (1). As a consequence of the development of synthetic cannabinoids (e.g., nabilone [2], HU-211 [dexanabinol; ref. (3), or ajulemic acid [CT-3; ref. 4]) and the discovery of the chemically different endogenous cannabinoid receptor ligands (“endocannabinoids,” e.g., anandamide, 2-arachidonoylglycerol) (5,6), the term ’“phytocannabinoids’” was proposed for these particular Cannabis constituents (7).
Resumo:
The identification of targets whose interaction is likely to result in the successful treatment of a disease is of growing interest for natural product scientists. In the current study we performed an exemplary application of a virtual parallel screening approach to identify potential targets for 16 secondary metabolites isolated and identified from the aerial parts of the medicinal plant RUTA GRAVEOLENS L. Low energy conformers of the isolated constituents were simultaneously screened against a set of 2208 pharmacophore models generated in-house for the IN SILICO prediction of putative biological targets, i. e., target fishing. Based on the predicted ligand-target interactions, we focused on three biological targets, namely acetylcholinesterase (AChE), the human rhinovirus (HRV) coat protein and the cannabinoid receptor type-2 (CB (2)). For a critical evaluation of the applied parallel screening approach, virtual hits and non-hits were assayed on the respective targets. For AChE the highest scoring virtual hit, arborinine, showed the best inhibitory IN VITRO activity on AChE (IC (50) 34.7 muM). Determination of the anti-HRV-2 effect revealed 6,7,8-trimethoxycoumarin and arborinine to be the most active antiviral constituents with IC (50) values of 11.98 muM and 3.19 muM, respectively. Of these, arborinine was predicted virtually. Of all the molecules subjected to parallel screening, one virtual CB (2) ligand was obtained, i. e., rutamarin. Interestingly, in experimental studies only this compound showed a selective activity to the CB (2) receptor ( Ki of 7.4 muM) by using a radioligand displacement assay. The applied parallel screening paradigm with constituents of R. GRAVEOLENS on three different proteins has shown promise as an IN SILICO tool for rational target fishing and pharmacological profiling of extracts and single chemical entities in natural product research.
Resumo:
It has been known for over a hundred years that microorganisms can produce volatile arsenic (As) species, termed “arsines”. However, this topic has received relatively little attention compared to As behaviour in soils and biotransformation through the trophic level in the marine and terrestrial environment. We believe this is due to long-standing misconceptions regarding volatile As stability and transport as well as an absence, until recently, of appropriate sampling methods. First and foremost, an attempt is made to unify arsines' designations, notations and formulas, taking into account all the different terms used in the literature. Then, the stability of As volatile species is discussed and new analytical developments are explored. Further, the special cases of diffuse low-level emissions (e.g. soil and sediment biovolatilisation), and point sources with high-level emissions (geothermal environments, landfills, and natural gas) are comprehensively reviewed. In each case, future possible areas of research and unknown mechanisms are identified and their importance towards the global As biogeochemical cycle is explored. This review gathers new information regarding mechanisms, stability, transport and sampling of the very elusive arsines and shows that more research should be conducted on this important process.
Resumo:
The provision of quality colostrum with a high concentration of immunoglobulins is critical for newborn calf health. Because first colostrum may be low in overall concentration to effectively reduce the risk of newborn infections, we tested equivalent milking fractions of colostrum for possible IgG differences. The objective of this study was to determine if the fractional composition of colostrum changes during the course of milking with a focus on immunoglobulins. Twenty-four Holstein and Simmental cows were milked (first colostrum) within 4h after calving. The colostrum of 1 gland per animal was assembled into 4 percentage fractions over the course of milking: 0 to 25%, 25 to 50%, 50 to 75%, and 75 to 100%. The IgG concentration among the various fractions did not change in any significant pattern. Concentration of protein, casein, lactose and somatic cell count remained the same or exhibited only minor changes during the course of fractional milking colostrum. We determined that no benefit exists in feeding any particular fraction of colostrum to the newborn.